Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 615(7951): 251-258, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890370

RESUMO

Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined1. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed2-4. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters5,6; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively. Here, we extracted the chemical characteristics and sequential arrangement along a protein chain at the segmental level from natural protein libraries and used the information to design heteropolymer ensembles as mixtures of disordered, partially folded and folded proteins. For each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids including assisting protein folding during translation, preserving the viability of fetal bovine serum without refrigeration, enhancing the thermal stability of proteins and behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability. This framework provides valuable guiding principles to synthetically realize protein properties, engineer bio/abiotic hybrid materials and, ultimately, realize matter-to-life transformations.


Assuntos
Materiais Biomiméticos , Biomimética , Polímeros , Conformação Proteica , Dobramento de Proteína , Proteínas , Sequência de Aminoácidos , Polímeros/síntese química , Polímeros/química , Proteínas/química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Líquidos Corporais/química , Citosol/química , Soroalbumina Bovina/química , Biologia Sintética
2.
Small ; 20(4): e2305877, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718437

RESUMO

The precise design of low-cost, efficient, and definite electrocatalysts is the key to sustainable renewable energy. The urea oxidation reaction (UOR) offers a promising alternative to the oxygen evolution reaction for energy-saving hydrogen generation. In this study, by tuning the lattice expansion, a series of M-FeNi layered double hydroxides (M-FeNi LDHs, M: Mo, Mn, V) with excellent UOR performance are synthesized. The hydrolytic transformation of Fe-MIL-88A is assisted by urea, Ni2+ and high-valence metals, to form a hollow M-FeNi LDH. Owing to the large atomic radius of the high-valence metal, lattice expansion is induced, and the electronic structure of the FeNi-LDH is regulated. Doping with high-valence metal is more favorable for the formation of the high-valence active species, NiOOH, for the UOR. Moreover, the hollow spindle structure promoted mass transport. Thus, the optimal Mo-FeNi LDH showed outstanding UOR electrocatalytic activity, with 1.32 V at 10 mA cm-2 . Remarkably, the Pt/C||Mo-FeNi LDH catalyst required a cell voltage of 1.38 V at 10 mA·cm-2 in urea-assisted water electrolysis. This study suggests a new direction for constructing nanostructures and modulating electronic structures, which is expected to ultimately lead to the development of a class of auxiliary electrocatalysts.

4.
Ecotoxicol Environ Saf ; 276: 116309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599156

RESUMO

Emerging evidence has suggested that exposure to PM2.5 is a significant contributing factor to the development of chronic obstructive pulmonary disease (COPD). However, the underlying biological effects and mechanisms of PM2.5 in COPD pathology remain elusive. In this study, we aimed to investigate the implication and regulatory effect of biomass fuels related-PM2.5 (BRPM2.5) concerning the pathological process of fibroblast-to-myofibroblast transition (FMT) in the context of COPD. In vivo experimentation revealed that exposure to biofuel smoke was associated with airway inflammation in rats. After 4 weeks of exposure, there was inflammation in the small airways, but no significant structural changes in the airway walls. However, after 24 weeks, airway remodeling occurred due to increased collagen deposition, myofibroblast proliferation, and tracheal wall thickness. In vitro, cellular immunofluorescence results showed that with stimulation of BRPM2.5 for 72 h, the cell morphology of fibroblasts changed significantly, most of the cells changed from spindle-shaped to star-shaped irregular, α-SMA stress fibers appeared in the cytoplasm and the synthesis of type I collagen increased. The collagen gel contraction experiment showed that the contractility of fibroblasts was enhanced. The expression level of TRPC1 in fibroblasts was increased. Specific siRNA-TRPC1 blocked BRPM2.5-induced FMT and reduced cell contractility. Additionally, specific siRNA-TRPC1 resulted in a decrease in the augment of intracellular Ca2+ concentration ([Ca2+]i) induced by BRPM2.5. Notably, it was found that the PI3K inhibitor, LY294002, inhibited enhancement of AKT phosphorylation level, FMT occurrence, and elevation of TRPC1 protein expression induced by BRPM2.5. The findings indicated that BRPM2.5 is capable of inducing the FMT, with the possibility of mediation by PI3K/AKT/TRPC1. These results hold potential implications for the understanding of the molecular mechanisms involved in BRPM2.5-induced COPD and may aid in the development of novel therapeutic strategies for pathological conditions characterized by fibrosis.


Assuntos
Fibroblastos , Pulmão , Miofibroblastos , Material Particulado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Canais de Cátion TRPC , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Miofibroblastos/efeitos dos fármacos , Material Particulado/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Canais de Cátion TRPC/metabolismo , Masculino , Biomassa , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/patologia
5.
Small ; 19(27): e2300530, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971299

RESUMO

Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.

6.
Small ; 19(11): e2207044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642802

RESUMO

Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for PtII . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm-2 for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm-2 for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm-2 , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.

7.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032042

RESUMO

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

8.
Inorg Chem ; 61(8): 3553-3562, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148476

RESUMO

High storage capacity, high separation selectivity, and high structure stability are essential for an idea gas adsorbent. However, it is not easy to achieve all three at the same time, even for the promising metal-organic framework (MOF) adsorbents. We demonstrate herein that robust [Sc3O]-organic frameworks could be regulated by a micropore combination strategy for high-performance acetylene adsorption. Under the same solvent system with formic acid as a modulator, similar tritopic ligands extend [Sc3O(COO)6] trigonal-prismatic clusters to generate SNNU-5-Sc and SNNU-150-Sc adsorbents. Notably, the two Sc-MOFs can keep their architectures over 24 h in water at different pH values (2-12) or at 90 °C. Modulated by the linker symmetry, the final stacking metal-organic polyhedral cages produce open window sizes of about 10 Å for SNNU-5-Sc and 5 Å + 7 Å for SNNU-150-Sc. Due to such micropore combinations, SNNU-5-Sc exhibits a top-level C2H2 uptake of 211.2 cm3 g-1 (1 atm and 273 K) and SNNU-150-Sc shows high C2H2/CH4, C2H2/C2H4, and C2H2/CO2 selectivities of 80.65, 4.03, and 8.19, respectively, under ambient conditions. Dynamic breakthrough curves obtained on a fixed-bed column and grand canonical Monte Carlo (GCMC) simulations further support their prominent acetylene storage and purification performance. High framework stability, storage capacity, and separation selectivity make SNNU-5-Sc and SNNU-150-Sc ideal acetylene adsorbents in practical applications.

9.
Inorg Chem ; 61(36): 14397-14402, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041736

RESUMO

Heteroatom doping can effectively tune the electronic structure of an electrocatalyst to accelerate the adsorption/desorption of reaction intermediates, which sharply increases their intrinsic electroactivity. Herein, we successfully prepare iron (Fe)-doped cobalt phosphide (CoP) nanohoops (Fe/CoP NHs) with different Fe/Co atomic ratios as highly active electrocatalysts for the nitrate electrocatalytic reduction reaction (NIT-ERR). Electrochemical measurements reveal that appropriate Fe doping can improve the electroactivity of cobalt phosphide nanohoops for the NIT-ERR. In a 1 M KOH electrolyte, the Fe/CoP NHs with the optimized chemical composition can achieve an efficient ammonia (NH3) generation rate of 27.6 mg h-1 mgcat-1 for the conversion of NO3- into NH3 and a Faradaic efficiency of 93.3% at a -0.25 V potential, which exceed the values of various previously reported nanomaterials in an alkaline electrolyte.

10.
Inorg Chem ; 61(39): 15678-15685, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36122376

RESUMO

The electrocatalytic nitrate reduction reaction (NO3--ERR) to ammonia (NH3) is a promising strategy for NH3 production. Cu-based nanomaterials have been regarded as a kind of effective NO3--ERR catalysts. In this work, high-quality hollow Cu2O nanocubes (Cu2O h-NCs) are facilely synthesized by a simple one-step reduction method. The as-prepared Cu2O h-NCs reveal high selectivity and activity for NO3--ERR, which is ascribed to abundant oxygen vacancies, high surface area, hollow architecture, low mass transfer resistance, and strong adsorbing ability toward NO3-. In fact, Cu2O h-NCs can achieve a Faradic efficiency of 92.9% and an NH3 yield of 56.2 mg h-1 mgcat-1 for NH3 production at -0.85 V (vs RHE) potential, which exceeds those of other transition-metal-based NO3--ERR electrocatalysts.

11.
Inorg Chem ; 60(23): 18473-18482, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797628

RESUMO

Acetylene (C2H2) purification is of great importance for many chemical synthesis and processes. Metal-organic frameworks (MOFs) are widely used for gas adsorption and separation due to their variable structure and porosity. However, the exploitation of ideal MOF adsorbents for C2H2 keeps a challenging task. Herein, a combination of open metal sites (OMSs) and Lewis basic sites (LBSs) in robust MOFs is demonstrated to effectively promote the C2H2 purification performance. Accordingly, SNNU-37(Fe/Sc), two isostructural MOFs constituted by [Fe3O(COO)6] or [Sc3O(COO)6] trinuclear clusters and amide-functionalized tricarboxylate linkers, were designed with extra-stable 3,6-connected new architectures. Derived from the coexistence of high-density OMSs and LBSs, the C2H2 adsorption amounts of SNNU-37(Fe/Sc) are much higher than those values for C2H4 and CO2. Theoretical IAST selectivity values of SNNU-37(Fe) are 2.4 for C2H2/C2H4 (50/50, v/v) and 9.9 for C2H2/CO2 (50/50, v/v) at 298 K and 1 bar, indicating an excellent C2H2 separation ability. Experimental breakthrough curves also revealed that SNNU-37(Fe) could effectively separate C2H2/C2H4 and C2H2/CO2 under ambient conditions. GCMC simulations further indicate that open Fe or Sc sites and amide groups mainly contribute to stronger adsorption sites for C2H2 molecules.

12.
Bioprocess Biosyst Eng ; 44(3): 483-493, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33044587

RESUMO

Halloysite nanotube (HNT) is a natural bio-compatible and stable nanomaterial available in abundance at low-cost. In this work, HNT was modified by two strategies to make it suitable for supporting immobilization of chloroperoxidase (CPO). Firstly, Fe3O4 nanoparticles were deposited on HNT, so magnetic separation can be used instead of centrifugation. Then, the magnetic HNT was modified by 3-aminopropyltriethoxysilane (APTES), which can provide amine group on surface of HNT and meanwhile inhibit the agglomeration of magnetic HNT. Then, HNT-Fe3O4 -APTES was linked with branched polyethyleneimine (PEI) to provide more amino for binding with enzyme. The so-prepared CPO@HNT-Fe3O4-APTES-PEI showed enhanced enzyme loading, reusability, improved thermal stability and tolerance to organic solvents than free CPO. For example, after 10 repeated uses, CPO@HNT- Fe3O4-APTES-PEI can maintain 92.20% of its original activity compared with 65.12% of activity of CPO@HNT-APTES-PEI and 45.69% of activity of CPO@HNT. The kinetic parameters indicated the affinity and specificity of immobilized enzyme to substrate was increased. CPO@HNT-Fe3O4-APTES-PEI was very efficient when it was applied in the degradation of pesticides mesotrione in wastewater. The degradation efficiency can reach 90% within 20 min at range of 5-40 µmol·L-1. These results ensure the potential practical application of this bio-materials in wastewater treatment.


Assuntos
Ascomicetos/enzimologia , Cloreto Peroxidase/química , Argila/química , Enzimas Imobilizadas/química , Óxido Ferroso-Férrico/química , Proteínas Fúngicas/química , Nanotubos/química , Praguicidas/química , Águas Residuárias/química
13.
Angew Chem Int Ed Engl ; 60(18): 10122-10128, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33533093

RESUMO

The high storage capacity versus high selectivity trade-off barrier presents a daunting challenge to practical application as an acetylene (C2 H2 ) adsorbent. A structure-performance relationship screening for sixty-two high-performance metal-organic framework adsorbents reveals that a moderate pore size distribution around 5.0-7.5 Šis critical to fulfill this task. A precise pore space partition approach was involved to partition 1D hexagonal channels of typical MIL-88 architecture into finite segments with pore sizes varying from 4.5 Š(SNNU-26) to 6.4 Š(SNNU-27), 7.1 Š(SNNU-28), and 8.1 Š(SNNU-29). Coupled with bare tetrazole N sites (6 or 12 bare N sites within one cage) as high-density H-bonding acceptors for C2 H2 , the target MOFs offer a good combination of high C2 H2 /CO2 adsorption selectivity and high C2 H2 uptake capacity in addition to good stability. The optimized SNNU-27-Fe material demonstrates a C2 H2 uptake of 182.4 cm3 g-1 and an extraordinary C2 H2 /CO2 dynamic breakthrough time up to 91 min g-1 under ambient conditions.

14.
Inorg Chem ; 59(7): 4825-4834, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32186866

RESUMO

The separation of a mixture of C2H2 and CO2 is a great challenge due to their similar molecular sizes and shapes. Al-based metal-organic frameworks (Al-MOFs) have great promise for gas separation applications due to their light weight, high stability, and low cost. However, the cultivation of suitable Al-MOF single crystals is extremely difficult and has limited their explorations up to now. Since In, Ga, and Al are all 3p-block metal elements, a systematic application of the periodic law to investigate 3p-MOFs will undoubtedly help in the understanding and development of worthy Al-MOF materials. Herein, we report the design of a robust 3p metal-organic framework platform (SNNU-150) and the systematic regulation of C2H2/CO2 separation by open 3p-block metal sites. X-ray single-crystal diffraction analysis reveals that SNNU-150 is a 3,6-connected 3D framework consisting of [M3O(COO)6] trinuclear secondary building units (SBUs) and tritopic nitrilotribenzoate (NTB) linkers. Small {[M3O(COO)6]4(NTB)6} tetrahedral cages and extra-large {[M3O(COO)6]10(NTB)14} polyhedral cages connect with each other to generate a hierarchically porous architecture. These 3p-MOFs present very high water, thermal, and chemical stability, especially for SNNU-150-Al, which can maintain its framework at 85 °C in water for 24 h and in a room-temperature environment for more than 30 days. IAST calculations, breakthrough experiments, and GCMC simulations all show that SNNU-150 MOFs have top-level C2H2/CO2 separation performance and follow the order Al-MOF > Ga-MOF > In-MOF.

15.
Inorg Chem ; 59(14): 10368-10373, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32633506

RESUMO

The construction of superstable metal-organic frameworks (MOFs) for selective gas uptake is urgently demanded but remains a great challenge. Herein, a unique bifunctional deformed [Ga3O(COO)6] inorganic secondary building unit (SBU) generated from the desymmetrical evolution of typical triangular prismatic trinuclear cluster was first introduced, which was extended by an isosceles triangular organic linker to produce a robust Ga-MOF (SNNU-63). Remarkably, SNNU-63 can stabilize in water at 25 °C for 96 h and at 80 °C for more than 24 h, which surpasses nearly all other Ga-MOFs. The combined effects of open metal sites and hydrophobic pore environment provided by deformed [Ga3O] SBUs render SNNU-63 with high C2H2 storage capacity and efficient C2H2 and natural gas purification performance. The ideal adsorbed solution theory calculation, column breakthrough tests, and grand canonical Monte Carlo simulations demonstrate that SNNU-63 is a potential material for addressing the challenge of C2H2/CO2 and C2H2/CH4 mixture separation under ambient conditions.

16.
Inorg Chem ; 59(22): 16725-16736, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33152248

RESUMO

Both methane (CH4) and acetylene (C2H2) are important energy source and raw chemicals in many industrial processes. The development of an energy-efficient and environmentally friendly separation and purification strategy for CH4 and C2H2 is necessary. Ultramicroporous metal-organic framework (MOF) materials have shown great success in the separation and purification of small-molecule gases. Herein, the synergy effect of tritopic polytetrazolate and ditopic terephthalate ligands successfully generates a series of isoreticular ultramicroporous cadmium tetrazolate-carboxylate MOF materials (SNNU-13-16) with excellent CH4 and C2H2 purification performance. Except for the uncoordinated tetrazolate N atoms serving as Lewis base sites, the pore size and pore surface of MOFs are systematically engineered by regulating dicarboxylic acid ligands varying from OH-BDC (SNNU-13) to Br-BDC (SNNU-14) to NH2-BDC (SNNU-15) to 1,4-NDC (SNNU-16). Benefiting from the ultramicroporous character (3.8-5.9 Å), rich Lewis base N sites, and tunable pore environments, all of these ultramicroporous MOFs exhibit a prominent separation capacity for carbon dioxide (CO2) or C2 hydrocarbons from CH4 and C2H2. Remarkably, SNNU-16 built by 1,4-NDC shows the highest ideal adsorbed solution theory CO2/CH4, ethylene (C2H4)/CH4, and C2H2/CH4 separation selectivity values, which are higher than those of most famous MOFs with or without open metal sites. Dynamic breakthrough experiments show that SNNU-16 can also efficiently separate the C2H2/CO2 mixtures with a gas flow rate of 4 mL min-1 under 1 bar and 298 K. The breakthrough time (18 min g-1) surpasses most best-gas-separation MOFs and nearly all other metal azolate-carboxylate MOF materials under the same conditions. The above prominently CH4 and C2H2 purification abilities of SNNU-13-16 materials were further confirmed by the Grand Canonical Monte Carlo (GCMC) simulations.

17.
Exp Cell Res ; 377(1-2): 56-66, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30779919

RESUMO

Ozone (O3) is a major component of air pollution, which has been associated with airway inflammation characterized by the influx of neutrophils in asthmatic subjects. Canonical transient receptor potential 6 (TRPC6) channel is recently identified as a target of oxidative stress which is involved in airway inflammation. However, the regulatory role of TRPC6 in airway epithelial cells and neutrophils has not yet been illuminated in detail. In this study, we investigated the role of TRPC6 in neutrophil adhesion to airway epithelial cells exposed to O3 in vivo and in vitro approaches. Using transgenic mice, the results showed that TRPC6-deficiency attenuated O3-induced neutrophil recruitment to airway epithelial cells and intercellular adhesion molecule-1 (ICAM-1) expression. In vitro, O3 induced ICAM-1 expression and neutrophil adhesion to 16HBE cells (human airway epithelial cell line) and which were reduced by both TRPC6 silencing short hairpin RNA (shRNA) and TRPC6 inhibitor Larixyl Acetate (LA). We also confirmed that TRPC6-dependent Ca2+ entry and NF-κB activation in 16HBE cells were required for ICAM-1-mediated neutrophil adhesion exposed to O3. In conclusion, this study demonstrated the contribution of TRPC6 to O3-induced neutrophil adhesion to airway epithelial cells via NF-κB activation and ICAM-1 expression, which may provide new potential concepts for preventing and treating air pollutant-related inflammatory lung diseases.


Assuntos
Adesão Celular , Células Epiteliais/fisiologia , Inflamação/prevenção & controle , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo , Neutrófilos/fisiologia , Ozônio/toxicidade , Canal de Cátion TRPC6/fisiologia , Animais , Células Epiteliais/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Neutrófilos/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais
18.
Inorg Chem ; 58(24): 16792-16799, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31762269

RESUMO

Evaluating the effect of ligand substitution on metal ions and/or clusters during the MOF growth process is conducive to rational design of isoreticular MOFs with improved performance. Through topological direction and ligand substitution strategy, we herein constructed two Sc-soc-MOFs (Sc-EBTC and Sc-ABTC) based on two similar rectangular-planar diisophthalate ligands, linear-shaped H4EBTC (1,1'-ethynebenzene-3,3',5,5'-tetracarboxylic acid) and zigzag-shaped H4ABTC (3,3',5,5'-azobenzenetetracarboxylic acid), under solvothermal conditions with formic acid as a modulator. {Sc[(Sc3O)(H2O)3]3(EBTC)6} (Sc-EBTC) possesses two distinct clusters as SBUs, trinuclear [Sc3O(CO2)6] (SBU1) and mononuclear cluster [ScO6] (SBU2), which maintain the soc-topology except for the mononuclear [ScO6] instead of the corresponding trinuclear [Sc3O(CO2)6] in Sc-ABTC ({(Sc3O)(H2O)3(ABTC)1.5(NO3)}). Notably, Sc-EBTC represents a rare soc-MOF with two distinct clusters as SBUs. Due to similar pore spaces, the two Sc-soc-MOF materials both exhibit enhanced and comparable gas sorption and selectivity performances. Specially, their remarkable C2H2, C2H4, and CO2 storage capacity along with prominent CO2/CH4 and C2-hydrocarbons/CH4 separations indicate that these Sc-soc-MOFs are promising adsorbents for natural gas purification under ambient conditions.

19.
Inorg Chem ; 58(16): 11220-11230, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31368311

RESUMO

The detection of nitro compounds and removal of organic dyes remain urgent issues because they are poisonous to humans. Taking advantage of metal-organic framework (MOF) materials, we demonstrate herein an indium-organic framework (InOF) exhibiting sensitive fluorescence sensing of nitro compounds, prominent dye capture, and excellent photodegradation of dyes. By using 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB), an amino-functionalized BTB-like linker, the 3D SNNU-110 structure ({[In3OCl(H2O)2(TATAB)2]}n) is formed. SNNU-110 shows a 3,6-connected 3,6T22 topology with TATAB and [In3O(CO2)6] tricapped trigonal-prismatic clusters as 3- and 6-connected nodes. Thanks to the fluorescence properties and amine recognition sites of TATAB, SNNU-110 exhibits excellent performance of fluorescence quenching for six electron-deficient nitroaromatics. The intercrossing 1D channels in SNNU-110 formed from the a- and b-axis directions with dimensions of about 18 Å × 11 Å can capture diverse cationic, anionic, or neutral dyes effectively. What is more, the existence of an inorganic [In3O] cluster enable SNNU-110 to be a good photocatalyst. Upon irradiation with a 300 W xenon lamp, SNNU-110 shows outstanding photocatalytic activity toward rhodamine B (RhB) and methylene blue (MB), and there was almost no degradation. The catalytic activity can retain about 94.6% (RhB) and 93.1% (MB), respectively. Overall, SNNU-110 fully demonstrates the power of multicomponent MOFs, which provide a feasible route for the design of functional materials toward to pollutant identification and removal applications.

20.
Bioprocess Biosyst Eng ; 42(6): 1065-1075, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30879145

RESUMO

A multitude of industrial processes are catalyzed by two or more enzymes working together in a cascade way. However, designing efficient enzymatic cascade reactions is still a challenge. In this work, a TiO2 thin film with mesoporous pores was prepared and used as carrier for co-immobilization of chloroperoxidase (CPO) and glucose peroxidase (GOx). By adjusting the dosage of hexadecyltrimethylammonium bromide (CTAB) and the ratio of the two enzymes, CPO and GOx were well distributed and positional orientated to their own appropriate pores to form an ordered "occupation" based on a "feet in right shoes" effect. Moreover, when the pore size was controlled around 12 nm, the enzymes aggregation was inhibited so as to avoid the decrease of activity of enzyme; The catalytic performance of TiO2-GOx and CPO composites was evaluated by the application of decolorization of Orange G dye in a cascaded manner. The oxidant H2O2 needed by CPO is generated in situ through glucose oxidation by GOx. Upon co-immobilization of CPO and GOx on the same carrier, a large increase in the initial catalytic efficiency was detected when compared to an equimolar mixture of the free enzymes, which was four times greater. Moreover, the affinity of the enzyme toward substrate binding was improved according to the kinetic assay. The thermal stability of TiO2-GOx and CPO composites were greatly improved than free enzymes. The TiO2-GOx and CPO composites can be easily separated from the reaction media which facilitate its recycle use.


Assuntos
Compostos Azo/química , Cloreto Peroxidase/química , Enzimas Imobilizadas/química , Membranas Artificiais , Peroxidases/química , Titânio/química , Oxirredução , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA