Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Plant Cell ; 34(11): 4388-4408, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35972422

RESUMO

Premature abscission of flowers and fruits triggered by low light stress can severely reduce crop yields. However, the underlying molecular mechanism of this organ abscission is not fully understood. Here, we show that a gene (SlCLV3) encoding CLAVATA3 (CLV3), a peptide hormone that regulates stem cell fate in meristems, is highly expressed in the pedicel abscission zone (AZ) in response to low light in tomato (Solanum lycopersicum). SlCLV3 knockdown and knockout lines exhibit delayed low light-induced flower drop. The receptor kinases SlCLV1 and BARELY ANY MERISTEM1 function in the SlCLV3 peptide-induced low light response in the AZ to decrease expression of the transcription factor gene WUSCHEL (SlWUS). DNA affinity purification sequencing identified the transcription factor genes KNOX-LIKE HOMEDOMAIN PROTEIN1 (SlKD1) and FRUITFULL2 (SlFUL2) as SlWUS target genes. Our data reveal that low light reduces SlWUS expression, resulting in higher SlKD1 and SlFUL2 expression in the AZ, thereby perturbing the auxin response gradient and causing increased ethylene production, eventually leading to the initiation of abscission. These results demonstrate that the SlCLV3-SlWUS signaling pathway plays a central role in low light-induced abscission by affecting auxin and ethylene homeostasis.


Assuntos
Etilenos , Flores , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Etilenos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Homeostase , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Physiol ; 192(1): 648-665, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36760172

RESUMO

Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress. ABA deficiency in the notabilis (not) mutant, which carries a mutation in 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (SlNCED1), strongly inhibited the cold tolerance of SlREC2-silenced plants and empty vector control plants and resulted in a similar phenotype. In addition, foliar application of ABA rescued the cold tolerance of SlREC2-silenced plants, which confirms that SlNCED1-mediated ABA accumulation is required for SlREC2-regulated cold tolerance. Strikingly, SlREC2 physically interacted with ß-RING CAROTENE HYDROXYLASE 1b (SlBCH1b), a key regulatory enzyme in the xanthophyll cycle. Disruption of SlBCH1b severely impaired photoprotection, ABA accumulation, and CBF-pathway gene expression in tomato plants under cold stress. Taken together, this study reveals that SlREC2 interacts with SlBCH1b to enhance cold tolerance in tomato via integration of SlNCED1-mediated ABA accumulation, photoprotection, and the CBF-pathway, thus providing further genetic knowledge for breeding cold-resistant tomato varieties.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Repetições de Tetratricopeptídeos , Melhoramento Vegetal , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
3.
J Integr Plant Biol ; 66(4): 749-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420861

RESUMO

Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 189(4): 2396-2412, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522030

RESUMO

Plant organ abscission, a process that is important for development and reproductive success, is inhibited by the phytohormone auxin and promoted by another phytohormone, jasmonic acid (JA). However, the molecular mechanisms underlying the antagonistic effects of auxin and JA in organ abscission are unknown. We identified a tomato (Solanum lycopersicum) class III homeodomain-leucine zipper transcription factor, HOMEOBOX15A (SlHB15A), which was highly expressed in the flower pedicel abscission zone and induced by auxin. Knocking out SlHB15A using clustered regularly interspaced short palindromic repeats-associated protein 9 technology significantly accelerated abscission. In contrast, overexpression of microRNA166-resistant SlHB15A (mSlHB15A) delayed abscission. RNA sequencing and reverse transcription-quantitative PCR analyses showed that knocking out SlHB15A altered the expression of genes related to JA biosynthesis and signaling. Furthermore, functional analysis indicated that SlHB15A regulates abscission by depressing JA-isoleucine (JA-Ile) levels through inhabiting the expression of JASMONATE-RESISTANT1 (SlJAR1), a gene involved in JA-Ile biosynthesis, which could induce abscission-dependent and abscission-independent ethylene signaling. SlHB15A bound directly to the SlJAR1 promoter to silence SlJAR1, thus delaying abscission. We also found that flower removal enhanced JA-Ile content and that application of JA-Ile severely impaired the inhibitory effects of auxin on abscission. These results indicated that SlHB15A mediates the antagonistic effect of auxin and JA-Ile during tomato pedicel abscission, while auxin inhibits abscission through the SlHB15A-SlJAR1 module.


Assuntos
Isoleucina , Solanum lycopersicum , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Theor Appl Genet ; 136(1): 11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36658295

RESUMO

KEY MESSAGE: A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.


Assuntos
Brassica rapa , Brassica rapa/genética , Mapeamento Cromossômico , Genes de Plantas , Clonagem Molecular , Sementes/genética
6.
Physiol Plant ; 175(3): e13925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37161507

RESUMO

Type 2C protein phosphatases (PP2Cs) play key roles in regulating plant senescence and ripening. Here, we discovered a subfamily F PP2C, SlPP2C, associated with leaf senescence through transcriptome analysis. The gene expression, protein accumulation, and promoter activity of SlPP2C all gradually increased along with the progression of leaf and flower senescence and fruit ripening in tomato. Also, the expression of SlPP2C was highly up-regulated by the senescent-inducible hormone treatments, showing more sensitivity to ethylene (ETH) and abscisic acid (ABA). Meanwhile, SlPP2C RNA interference (RNAi) tomato transgenic lines showed obvious delayed senescence and ripening phenotypes of leaves, flowers, and fruits. SlPP2C RNAi lines delayed leaf senescence with higher chlorophyll fluorescence and content, and lower expressions of senescence marker genes (SlSGR1 and SlSAG12) compared to WT. SlPP2C RNAi lines clearly delayed flower senescence time; it was at least twice longer than WT. SlPP2C RNAi lines delayed fruit ripening, exhibiting higher firmness and lower polygalacturonase activity compared to WT. In addition, we proved that SlPP2C is unable to interact with any of the ABA receptors (SlPYLs). Together, the results demonstrate that SlPP2C is a senescence-related and ripening-related gene.


Assuntos
Senescência Vegetal , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768571

RESUMO

Large-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package.


Assuntos
Metabolômica , Plantas , Metabolômica/métodos , Biblioteca Gênica
8.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298137

RESUMO

Cold stress usually causes the abscission of floral organs and a decline in fruit setting rate, seriously reducing tomato yield. Auxin is one of the key hormones that affects the abscission of plant floral organs; the YUCCA (YUC) family is a key gene in the auxin biosynthesis pathway, but there are few research reports on the abscission of tomato flower organs. This experiment found that, under low temperature stress, the expression of auxin synthesis genes increased in stamens but decreased in pistils. Low temperature treatment decreased pollen vigor and pollen germination rate. Low night temperature reduced the tomato fruit setting rate and led to parthenocarpy, and the treatment effect was most obvious in the early stage of tomato pollen development. The abscission rate of tomato pTRV-Slfzy3 and pTRV-Slfzy5 silenced plants was higher than that of the control, which is the key auxin synthesis gene affecting the abscission rate. The expression of Solyc07g043580 was down-regulated after low night temperature treatment. Solyc07g043580 encodes the bHLH-type transcription factor SlPIF4. It has been reported that PIF4 regulates the expression of auxin synthesis and synthesis genes, and is a key protein in the interaction between low temperature stress and light in regulating plant development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Ácidos Indolacéticos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
9.
Ergonomics ; 66(12): 2212-2222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36940236

RESUMO

We investigated the prevalence of work-related musculoskeletal symptoms (WMSs) among medical staff and evaluated the associations of different levels of adverse ergonomic factors with WMSs. A total of 6099 Chinese medical staff were asked to complete a self-reported questionnaire to assess the prevalence and risk factors of WMSs from June 2018 to December 2020. A prevalence rate of 57.5% was observed for WMSs among overall medical staffs, which mainly affected the neck (41.7%) and shoulder (33.5%). 'Keeping sitting for long hours very frequently' (OR = 1.26, 95% CI: 1.04, 1.53) was positively associated with WMSs in doctors, while 'keeping sitting for long hours occasionally' (OR = 0.91, 95% CI: 0.85, 0.97) was identified as a protective factor of WMSs in nurses. The associations of adverse ergonomic factors, organisational factors, and environmental factors with WMSs were different among medical staff in different positions.Practitioner summary: We conducted a multi-city study concerning the risk factors of WMSs by carrying out a face-to-face one-to-multiple questionnaire survey among medical staff in China. As a risk factor of WMSs in medical staff, adverse ergonomic factors should be paid more attention by the standard setting department and policy makers.Abbreviations: WMSDs: work-related musculoskeletal disorders; WMSs: work-related musculoskeletal symptoms; MSDs: musculoskeletal disorders; NMQ: Nordic Musculoskeletal Questionnaires; DMQ: Dutch Musculoskeletal Questionnaires; NIOSH: National Institute for Occupational Safety and Health; ORs: odds ratios.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Humanos , Estudos Transversais , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Musculoesqueléticas/epidemiologia , Doenças Musculoesqueléticas/etiologia , Ergonomia , Inquéritos e Questionários , Fatores de Risco , Corpo Clínico , China/epidemiologia , Prevalência
10.
New Phytol ; 233(5): 2127-2143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936108

RESUMO

Plants have evolved sophisticated regulatory networks to cope with dynamically changing light and temperature environments during day-night and seasonal cycles. However, the integration mechanisms of light and low temperature remain largely unclear. Here, we show that low red : far-red ratio (LR : FR) induces FAR-RED ELONGATED HYPOCOTYL3 (SlFHY3) transcription under cold stress in tomato (Solanum lycopersicum). Reverse genetic approaches revealed that knocking out SlFHY3 decreases myo-inositol accumulation and increases cold susceptibility, whereas overexpressing SlFHY3 induces myo-inositol accumulation and enhances cold tolerance in tomato plants. SlFHY3 physically interacts with ELONGATED HYPOCOTYL5 (SlHY5) to promote the transcriptional activity of SlHY5 on MYO-INOSITOL-1-PHOSPHATE SYNTHASE 3 (SlMIPS3) and induce myo-inositol accumulation in tomato plants under cold stress. Disruption of SlHY5 and SlMIPS3 largely suppresses the cold tolerance of SlFHY3-overexpressing plants and myo-inositol accumulation in tomato. Furthermore, silencing of SlMIPS3 drastically reduces myo-inositol accumulation and compromises LR : FR-induced cold tolerance in tomato. Together, our results reveal a crucial role of SlFHY3 in LR : FR-induced cold tolerance in tomato and unravel a novel regulatory mechanism whereby plants integrate dynamic environmental light signals and internal cues (inositol biosynthesis) to induce and control cold tolerance in tomato plants.


Assuntos
Solanum lycopersicum , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Inositol , Transdução de Sinal Luminoso , Solanum lycopersicum/genética
11.
Plant Physiol ; 185(4): 1829-1846, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33638643

RESUMO

Abscission of plant organs is induced by developmental signals and diverse environmental stimuli and involves multiple regulatory networks, including biotic or abiotic stress-impaired auxin flux in the abscission zone (AZ). Depletion of auxin activates AZ ethylene (ETH) production and triggers acceleration of abscission, a process that requires hydrogen peroxide (H2O2). However, the interaction between these networks and the underlying mechanisms that control abscission are poorly understood. Here, we found that expression of tonoplast intrinsic proteins, which belong to the aquaporin (AQP) family in the AZ was important for tomato (Solanum lycopersicum) pedicel abscission. Liquid chromatography-tandem mass spectrometry and in situ hybridization revealed that SlTIP1;1 was most abundant and specifically present in the tomato pedicel AZ. SlTIP1;1 localized in the plasma membrane and tonoplast. Knockout of SlTIP1;1 resulted in delayed abscission, whereas overexpression of SlTIP1;1 accelerated abscission. Further analysis indicated that SlTIP1;1 mediated abscission via gating of cytoplasmic H2O2 concentrations and osmotic water permeability (Pf). Elevated cytoplasmic levels of H2O2 caused a suppressed auxin signal in the early abscission stage and enhanced ETH production during abscission. Furthermore, we found that increasing Pf was required to enhance the turgor pressure to supply the break force for AZ cell separation. Moreover, we observed that SlERF52 bound directly to the SlTIP1;1 promoter to regulate its expression, demonstrating a positive loop in which cytoplasmic H2O2 activates ETH production, which activates SlERF52. This, in turn, induces SlTIP1;1, which leads to elevated cytoplasmic H2O2 and water influx.


Assuntos
Aquaporinas/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
12.
Plant Physiol ; 186(2): 1288-1301, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33711162

RESUMO

In many fruiting plant species, flower abscission is induced by low light stress. Here, we elucidated how signaling mediated by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls low light-induced flower drop in tomato (Solanum lycopersicum). We analyzed the expression patterns of an IDA-Like gene (SlIDL6) during low light-induced flower abscission, and used tandem mass spectrometry to identify and characterize the mature SlIDL6 peptide. Tomato knockout lines were created to investigate the in vivo function of SlIDL6. In addition, yeast one-hybrid assays were used to investigate the binding of the SlWRKY17 transcription factor to the SlIDL6 promoter, and silencing of SlWRKY17 expression delayed low light-induced flower abscission. SlIDL6 was specifically expressed in the abscission zone and at high levels during low light-induced abscission and ethylene treatment. SlIDL6 knockout lines showed delayed low light-induced flower drop, and the application of SlIDL6 peptide accelerated abscission. Overexpression of SlIDL6 rescued the ida mutant phenotype in Arabidopsis (Arabidopsis thaliana), suggesting functional conservation between species. SlIDL6-mediated abscission was via an ethylene-independent pathway. We report a SlWRKY17-SlIDL6 regulatory module that functions in low light promoted abscission by increasing the expression of enzymes involved in cell wall remodeling and disassembly.


Assuntos
Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Parede Celular/metabolismo , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Inflorescência/genética , Inflorescência/fisiologia , Inflorescência/efeitos da radiação , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos da radiação , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Pineal Res ; 73(2): e12810, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35620796

RESUMO

Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.


Assuntos
Melatonina , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Homeostase , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melatonina/farmacologia , Folhas de Planta/genética , Senescência Vegetal , Espécies Reativas de Oxigênio/metabolismo
14.
BMC Public Health ; 22(1): 1493, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931976

RESUMO

BACKGROUND: With the acceleration of industrialization and population aging, low back pain (LBP) has become the leading cause of life loss years caused by disability. Thus, it places a huge economic burden on society and is a global public health problem that needs urgent solution. This study aimed to conduct an epidemiological investigation and research on a large sample of workers in key industries in different regions of China, determine the incidence and distribution characteristics of LBP, explore the epidemic law, and provide a reference basis for alleviating global public health problems caused by LBP. METHODS: We adopted a modified epidemiological cross-sectional survey method and a stratified cluster sampling method. All on-duty workers who fulfill the inclusion criteria are taken as the research participants from the representative enterprises in key industries across seven regions: north, east, central, south, southwest, northwest, and northeast China. The Chinese version of the musculoskeletal disease questionnaire, modified by a standardized Nordic questionnaire, was used to collect information, and 57,501 valid questionnaires were received. Descriptive statistics were used, and multivariate logistic regression analysis (p < 0.05) was performed to explore the association between musculoskeletal disorders and potential risk factors. RESULTS: LBP annual incidence among workers in China's key industries is 16.4%. There was a significant difference in LBP incidence among occupational groups across different industries (p < 0.05). The multivariate regression model showed the following as risk factors for LBP: frequent repetitive movements with the trunk, working in the same positions at a high pace, trunk position, frequently turning around with your trunk, often working overtime, lifting heavy loads (i.e., more than 20 kg), education level, staff shortage, working age (years), cigarette smoking, use of vibration tools at work, body mass index, lifting heavy loads (i.e., more than 5 kg), and age (years). Physical exercise, often standing at work, and absolute resting time were protective factors. CONCLUSION: LBP incidence among key industries and workers in China is high. Thus, it is urgent to take relevant measures according to the individual, occupational, and psychosocial factors of LBP to reduce the adverse impact of LBP on workers' health.


Assuntos
Dor Lombar , Doenças Profissionais , China/epidemiologia , Estudos Transversais , Humanos , Dor Lombar/epidemiologia , Dor Lombar/etiologia , Doenças Profissionais/etiologia , Prevalência , Fatores de Risco , Inquéritos e Questionários
15.
BMC Musculoskelet Disord ; 23(1): 952, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329459

RESUMO

BACKGROUND: Changes in modern industrial production practices can easily lead to shoulder work-related musculoskeletal disorders (WMSD). The current reports on shoulder WMSD are limited to some industries are less well studied, and the sample size is usually small. This study aimed to describe the prevalence and severity of shoulder WMSD in a large sample of Chinese workers from 15 industries, analyze the possible correlations with sociodemographic and work-related variables, and compare the differences between industries. METHODS: A cross-sectional study was conducted among a sample of 55,749 participants from 252 enterprises in 15 industries throughout China. A Chinese version of the musculoskeletal disease questionnaire was used to collect the demographic factors, shoulder symptoms in past 12 months, and work-related factors including posture-related factors, repetition, vibration, work organization, job control, and environmental factors as independent variables. Descriptive statistics were used, and the binary logistic regression analysis was performed to explore the association between shoulder WMSD and potential demographic and work-related factors. RESULTS: Nearly 35.5% of participants reported shoulder pain and discomfort in the previous 12 months. Biopharmaceutical manufacturing (56.2%), medical services (54.4%), and aviation services (50.1%) were the three industries with the highest prevalence of shoulder WMSD. The pain score of aviation services workers was the highest. The related factors for shoulder WMSD varied among the different industries. CONCLUSION: Our study found a relatively high prevalence of shoulder WMSD in China. There were large differences in the prevalence of shoulder WMSD among industries, and the related factors were particular to each industry. Such information is useful to help occupational health practitioners and policymakers conduct preventive programs to reduce shoulder disorders in these working populations.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Humanos , Estudos Transversais , Ombro , Doenças Profissionais/diagnóstico , Doenças Profissionais/epidemiologia , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/epidemiologia , Prevalência , Inquéritos e Questionários , China/epidemiologia , Fatores de Risco
16.
Ecotoxicol Environ Saf ; 245: 114112, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155340

RESUMO

Food availability represents a major worldwide concern due to climate change and population growth. Low-temperature stress (LTS) severely restricts the growth of tomato seedlings. Exogenous 5-aminolevulinic acid (ALA) can alleviate the harm of abiotic stress including LTS; however, data on its protective mechanism on tomato seedling roots, the effects of organelle structure, and the regulation of metabolic pathways under LTS are lacking. In this study, we hope to fill the above gaps by exploring the effects of exogenous ALA on morphology, mitochondrial ultrastructure, reactive oxygen species (ROS) enrichment, physiological indicators, related gene expression, and metabolic pathway in tomato seedlings root under LTS. Results showed that ALA pretreatment could increase the activity of antioxidant enzymes and the content of antioxidant substances in tomato seedlings roots under LTS to scavenge the massively accumulated ROS, thereby protecting the mitochondrial structure of roots and promoting root development under LTS. Combined transcriptomic and metabolomic analysis showed that exogenous ALA pretreatment activated the glutathione metabolism and ß-alanine metabolism of tomato seedling roots under LTS, further enhanced the scavenging ability of tomato seedling roots to ROS, and improved the low-temperature tolerance of tomato seedlings. The findings provide a new insight into the regulation of the low-temperature tolerance of tomato by exogenous ALA.


Assuntos
Plântula , Solanum lycopersicum , Ácido Aminolevulínico/farmacologia , Antioxidantes/metabolismo , Glutationa/metabolismo , Solanum lycopersicum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Temperatura , beta-Alanina/metabolismo , beta-Alanina/farmacologia
17.
Plant J ; 103(6): 2100-2118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32573872

RESUMO

Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR-slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR-slida lines, likely related to insufficient ROS signal. Liquid chromatography-tandem mass spectrometry identified mature SlIDA as a 14-mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14-mer EPIP peptide rescued the CR-slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn-TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis.


Assuntos
Fertilização , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/fisiologia , Fertilização/fisiologia , Flores/fisiologia , Técnicas de Inativação de Genes , Homeostase , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiologia
18.
BMC Plant Biol ; 20(1): 477, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076819

RESUMO

BACKGROUND: Potassium (K+) is an essential ion for most plants, as it is involved in the regulation of growth and development. K+ homeostasis in plant cells has evolved to facilitate plant adaptation to K+-deficiency stress. Argonaute1 (AGO1) is regulated by miR168 to modulate the small RNA regulatory pathway by RNA silencing complex (RISC) in tomatoes. However, the role of miR168-mediated regulation of AGO1 in the context of K+ deficiency stress in tomatoes has not been elucidated yet. RESULTS: SlmiR168 and its target gene SlAGO1A were differentially expressed among low-K+-tolerant JZ34 and low-K+-sensitive JZ18 tomato plants. Transgenic tomato plants constitutively expressing pri-SlmiR168a showed stronger root system growth, better leaves development, and higher K+ contents in roots under K+-deficiency stress than those of the transgenic tomato lines expressing rSlAGO1A (SlmiR168-resistant) and the wild type (WT). Deep sequencing analysis showed that 62 known microRNAs (miRNAs) were up-regulated in 35S:rSlAGO1 compared with WT tomatoes. The same miRNAs were down-regulated in 35S:SlmiR168a compared with WT plants. The integrated analysis found 12 miRNA/mRNA pairs from the 62 miRNAs, including the root growth and cytokinin (CTK)/abscisic acid (ABA) pathways. CONCLUSIONS: The regulation mediated by SlmiR168 of SlAGO1A contributes to the plant development under low-K+ stress. Moreover, this regulation mechanism may influence downstream miRNA pathways in response to low-K+ stress through the CTK/ABA and root growth modulation pathways.


Assuntos
MicroRNAs/metabolismo , Potássio/metabolismo , RNA de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Redes e Vias Metabólicas/genética , MicroRNAs/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico
19.
J Exp Bot ; 71(1): 435-449, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31616940

RESUMO

Soluble carbohydrates not only directly affect plant growth and development but also act as signal molecules in processes that enhance tolerance to cold stress. Raffinose family oligosaccharides (RFOs) are an example and play an important role in abiotic stress tolerance. This study aimed to determine whether galactinol, a key limiting factor in RFO biosynthesis, functions as a signal molecule in triggering cold tolerance. Exposure to low temperatures induces the expression of galactinol synthase (AnGolS1) in Ammopiptanthus nanus, a desert plant that survives temperatures between -30 °C to 47 °C. AnGolS1 has a greater catalytic activity than tomato galactinol synthase (SlGolS2). Moreover, SlGolS2 is expressed only at low levels. Expression of AnGolS1 in tomato enhanced cold tolerance and led to changes in the sugar composition of the seeds and seedlings. AnGolS1 transgenic tomato lines exhibited an enhanced capacity for ethylene (ET) signaling. The application of galactinol abolished the repression of the ET signaling pathway by 1-methylcyclopropene during seed germination. In addition, the expression of ERF transcription factors was increased. Galactinol may therefore act as a signal molecule affecting the ET pathway.


Assuntos
Resposta ao Choque Frio/genética , Fabaceae/genética , Galactosiltransferases/genética , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Dissacarídeos/metabolismo , Fabaceae/enzimologia , Galactosiltransferases/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
20.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991847

RESUMO

Rhizosphere CO2 is vital for crop growth, development, and productivity. However, the mechanisms of plants' responses to root-zone CO2 are unclear. Oriental melons are sensitive to root-zone gas, often encountering high root-zone CO2 during cultivation. We investigated root growth and nitrogen metabolism in oriental melons under T1 (0.5%) and T2 (1.0%) root-zone CO2 concentrations using physiology and comparative transcriptome analysis. T1 and T2 increased root vigor and the nitrogen content in the short term. With increased treatment time and CO2 concentration, root inhibition increased, characterized by decreased root absorption, incomplete root cell structure, accelerated starch accumulation and hydrolysis, and cell aging. We identified 1280 and 1042 differentially expressed genes from T1 and T2, respectively, compared with 0.037% CO2-grown plants. Among them, 683 co-expressed genes are involved in stress resistance and nitrogen metabolism (enhanced phenylpropanoid biosynthesis, hormone signal transduction, glutathione metabolism, and starch and sucrose metabolism). Nitrogen metabolism gene expression, enzyme activity, and nitrogen content analyses showed that short-term elevated root-zone CO2 mainly regulated plant nitrogen metabolism post-transcriptionally, and directly inhibited it transcriptionally in the long term. These findings provided a basis for further investigation of nitrogen regulation by candidate genes in oriental melons under elevated root-zone CO2.


Assuntos
Dióxido de Carbono/metabolismo , Cucurbitaceae/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Fenótipo , Raízes de Plantas/ultraestrutura , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA