Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27603, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496849

RESUMO

Background: Jiuwan decoction has been used to treat chronic eczema since the Qing Dynasty. According to clinical experience, Shizhenqing granules (SZQG), derived from the Jiuwan decoction, exert beneficial clinical effects on acute eczema and reduce recurrence. Therefore, we elucidated the underlying mechanisms of SZQG through network pharmacology, molecular docking, and experimental validation. Methods: The main chemical components of SZQG were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). And the targets of SZQG against eczema were screened out through online databases. Then, the regulatory network map of the "herbal compound-potential target" and the target protein-protein interaction (PPI) network was constructed. The Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using by R language. Additionally, the interaction between the active compounds and the targets was verified by molecular docking technology. Finally, an experiment in vivo was used to verify the effect and mechanism of SZQG on eczema. Results: Using UHPLC-MS/MS, 158 main chemical compounds of SZQG were identified, and 72 compounds were selected according to the criteria for further analysis. All 237 potential targets of SZQG in eczema were explored using multiple online databases. The network with 14 core targets was screened out, including STAT3, RELA, TNF, JUN, MAPK3, IL-6, PIK3CA, STAT1, MAPK14, MAPK1, IL-4, NFKBIA, IL1B, and MYC. KEGG analyses indicated that the therapeutic effects of SZQG on eczema were predominantly associated with cytokine-cytokine receptor interaction, TNF, MAPK, NF-κB, toll-like receptor, T cell receptor, and Th1 and Th2 cell differentiation signaling pathways. Furthermore, the good affinity between the core compounds and core targets was verified by molecular docking technology, particularly for RELA and MAPK. Animal experiments revealed that SZQG downregulated MAPK14, RELA, T-bet, and GATA3 mRNA expression, reduced immunoglobulin E (IgE) and interleukin-4 (IL-4) serum concentrations, and improved eczema-like lesions in model rats. Conclusion: This study identified potential targets and signaling pathways of SZQG in the treatment of eczema, whereby RELA and MAPK14 may constitute the main therapeutic targets of SZQG in cytokine regulation and reduction of inflammatory responses.

2.
Hum Exp Toxicol ; 43: 9603271241251447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720657

RESUMO

PURPOSE: To explore the effect of acacetin on subarachnoid hemorrhage (SAH) and its possible mechanism. METHODS: SAH model of rat was established, and intraperitoneally injected with three doses of acacetin. To verify the role of PERK pathway, we used the CCT020312 (PERK inhibitor) and Tunicamycin (activators of endoplasmic reticulum stress). The SAH score, neurological function score, brain edema content, and Evans blue (EB) exudate were evaluated. Western blot was used to determine the expression of inflammation-associated proteins and PERK pathway. The activation of microglia was also determined through Iba-1 detection. TEM and immunofluorescence staining of LC3B were performed to observe the autophagy degree of SAH rats after acacetin. Tunel/NeuN staining, HE and Nissl' staining were performed for neuronal damage. RESULTS: Acacetin increased the neurological function score, reduce brain water content, Evans blue exudation and SAH scores. The microglia in cerebral cortex were activated after SAH, while acacetin could inhibit its activation, and decreased the expression of TNF-α and IL-6 proteins. The pathological staining showed the severe neuronal damage and increased neuronal apoptosis after SAH, while acacetin could improve these pathological changes. We also visualized the alleviated autophagy after acacetin. The expression of Beclin1 and ATF4 proteins were increased, but acacetin could inhibit them. Acacetin also inactivated PERK pathway, which could improve the neuronal injury and neuroinflammation after SAH, inhibit the microglia activation and the overactivated autophagy through PERK pathway. CONCLUSION: Acacetin may alleviate neuroinflammation and neuronal damage through PERK pathway, thus having the protective effect on EBI after SAH.


Assuntos
Autofagia , Flavonas , Microglia , Doenças Neuroinflamatórias , Transdução de Sinais , Hemorragia Subaracnóidea , eIF-2 Quinase , Animais , Masculino , Ratos , Autofagia/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-39052060

RESUMO

Xiatianwu is a traditional Chinese medicine. This study investigates the function of Xiatianwu in treating HCC through database analyses and in vitro experiments. The active ingredients of Xiatianwu were identified from TCMSP and HERB databases and their targets were predicted by Swiss TargetPrediction. The HCC dataset was screened using the GEO database, and the differentially expressed genes between HCC and non-tumor liver tissues were analyzed to identify overlapping targets with Xiatianwu. The intersecting targets underwent enrichment analysis using R software to elucidate the molecular mechanisms of Xiatianwu against HCC. Core targets were identified using the PPI network and MCODE algorithm. Clinical relevance and disease prognosis in HCC were verified using the TCGA database. Meanwhile, binding affinities among components and targets were validated with molecular docking. Finally, the anti-HCC efficacy of the active ingredient was validated in vitro. Our findings revealed that eight active ingredients of Xiatianwu interacted with 11 key targets, providing anti-HCC efficacy. Molecular docking indicated that bicuculline and fumarine exhibited superior binding abilities. Bicuculline, a representative ingredient of Xiatianwu, was chosen for in vitro validation. Results demonstrated that bicuculline, in a dose-dependent manner inhibited HCC cell viability, reduced migration, suppressed the G0/M cell cycle, and decreased core protein expression. Xiatianwu demonstrates significant potential for clinical application in treating HCC. Bicuculline, a key active ingredient of Xiatianwu, exerts anti-HCC effects by inhibiting the cell cycle.

4.
Front Plant Sci ; 15: 1372385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872879

RESUMO

The judicious management of water and nitrogen (N) is pivotal for augmenting crop productivity and N use efficiency, while also mitigating environmental concerns. With the advent of the High-Farmland Construction Program in China, one-off irrigation has become feasible for most dryland fields, presenting a novel opportunity to explore the synergistic strategies of water and N management. This study delves into the impact of one-off alternate furrow irrigation (AFI) and topdressing N fertilizer (TN) on soil nitrate-N distribution, and N productivity-including plant N accumulation, translocation, and allocation, and grain yield, protein content, N use efficiency of winter wheat (Triticum aestivum L.) in 2018-2019 and 2019-2020. Experimental treatments administered at the jointing stage comprised of two irrigation methods-every (EFI) and alternative (AFI) furrow irrigation at 75 mm, and two topdressing N rates-0 (NTN) and 60 (TN) kg N ha-1. Additionally, a conventional local farmer practice featuring no irrigation and no topdressing N (NINTN) was served as control. Compared to NINTN, EFINTN substantially increased aboveground N accumulation, grain yield, and protein yield, albeit with a reduction in grain protein content by 8.1%-10.6%. AFI, in turn, led to higher nitrate-N accumulation in the 60-160 cm soil depth at booting and anthesis, but diminished levels at maturity, resulting in a significant surge in N accumulation from anthesis to maturity and its contribution to grain, N fertilizer partial factor productivity (PFPN), and N uptake efficiency (NUPE), thereby promoting grain yield by 9.9% and preserving grain protein content. Likewise, TN enhanced soil nitrate-N at key growth stages, reflected in marked improvements in N accumulation both from booting to anthesis and from anthesis to maturity, as well as in grain yield, protein content, and protein yield. The combination of AFI and TN (AFITN) yielded the highest grain yield, protein content, with PFPN, NUPE, and N internal efficiency outstripping those of EFINTN, but not AFINTN. In essence, one-off AFI coupled with TN at the jointing stage is a promising strategy for optimizing soil nitrate-N and enhancing wheat N productivity in dryland where one-off irrigation is assured.

5.
Cancer Lett ; 598: 217094, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.


Assuntos
Eletroacupuntura , Glicólise , Lactoilglutationa Liase , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Eletroacupuntura/métodos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Lactoilglutationa Liase/metabolismo , Lactoilglutationa Liase/genética , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Paclitaxel/farmacologia , Aldeído Pirúvico/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA