Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Langmuir ; 40(13): 6940-6948, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507744

RESUMO

Flexible electrothermal films are crucial for protecting equipment and systems in cold weather, such as ice blockages in natural gas pipelines and icing on aircraft wings. Therefore, a flexible electric heater is one of the essential devices in industrial operations. One of the main challenges is to develop flexible electrothermal films with low operating voltage, high steady-state temperature, and good mechanical stability. In this study, a flexible electrothermal film based on graphene-patterned structures was manufactured by combining the laser induction method and the transfer printing process. The grid structure design provides accurate real-time monitoring for the application of electrothermal films and shows potential in solving problems related to deicing and clearing ice blockages in pipelines. The flexible electrothermal film can reach a high heating temperature of 165 °C at 15 V and exhibits sufficient heating stability. By employing a simple and efficient method to create a flexible, high-performance electrothermal film, we provide a reliable solution for deicing and monitoring applications.

2.
Inorg Chem ; 63(24): 10938-10942, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829776

RESUMO

Midinfrared nonlinear optical (NLO) rare earth chalcogenides have attracted extensive research interest in recent several decades. Employing charge-transfer engineering strategy in the early stage, rigid tetrahedral [GeS4] was introduced into rare-earth sulfides to synthesize KYGeS4, which had an enlarged band gap while maintaining a strong second harmonic generation (SHG) effect. Based on KYGeS4, La was equivalently substituted to successfully synthesize KLaGeS4 with a stronger SHG effect (dij = 1.2 × AgGaS2) and lower cost. Meanwhile, a larger band gap (Eg = 3.34 eV) was retained and realized phase matching (Δn = 0.098 @ 1064 nm). KLaGeS4 enabled an effective balance among band gap, SHG effect, and birefringence, making it a promising candidate for infrared NLO optical materials among various rare-earth sulfides.

3.
J Sports Sci ; 42(4): 365-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38507567

RESUMO

Patellofemoral pain syndrome (PFPS) is a common injury among runners, and it is thought that abnormal lower extremity biomechanics contribute to its development. However, the relationship between biomechanical changes after a marathon and PFPS injury remains limited. This study aims to investigate whether differences in knee and hip kinematics and lower extremity muscle activities exist in recreational runners before and after a marathon. Additionally, it aims to explore the relationship between these biomechanical changes and the development of PFPS injury. 12 recreational runners participated in the study. Kinematics and muscle activities of the lower extremity were recorded during walking (5 km/h) and running (10 km/h) tasks within 24 hours before and within 5 hours after a marathon. After the marathon, there was a significant decrease in peak knee flexion (walking: p = 0.006; running: p = 0.006) and an increase in peak hip internal rotation (walking: p = 0.026; running: p = 0.015) during the stance phase of both walking and running compared to before the marathon. The study demonstrates a decrease in knee flexion and an increase in hip internal rotation during the stance phase of gait tasks after completing a marathon, which may increase the risk of developing PFPS injury.


Assuntos
Extremidade Inferior , Corrida de Maratona , Músculo Esquelético , Síndrome da Dor Patelofemoral , Caminhada , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Masculino , Adulto , Músculo Esquelético/fisiologia , Extremidade Inferior/fisiologia , Feminino , Corrida de Maratona/fisiologia , Síndrome da Dor Patelofemoral/fisiopatologia , Corrida/fisiologia , Marcha/fisiologia , Articulação do Quadril/fisiologia , Quadril/fisiologia , Eletromiografia , Joelho/fisiologia , Adulto Jovem , Articulação do Joelho/fisiologia , Rotação , Estudos de Tempo e Movimento
4.
Angew Chem Int Ed Engl ; 63(2): e202316346, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37983620

RESUMO

Piezocatalytic hydrogen peroxide (H2 O2 ) production is a green synthesis method, but the rapid complexation of charge carriers in piezocatalysts and the difficulty of adsorbing substrates limit its performance. Here, metal-organic cage-coated gold nanoparticles are anchored on graphitic carbon nitride (MOC-AuNP/g-C3 N4 ) via hydrogen bond to serve as the multifunctional sites for efficient H2 O2 production. Experiments and theoretical calculations prove that MOC-AuNP/g-C3 N4 simultaneously optimize three key parts of piezocatalytic H2 O2 production: i) the MOC component enhances substrate (O2 ) and product (H2 O2 ) adsorption via host-guest interaction and hinders the rapid decomposition of H2 O2 on MOC-AuNP/g-C3 N4 , ii) the AuNP component affords a strong interfacial electric field that significantly promotes the migration of electrons from g-C3 N4 for O2 reduction reaction (ORR), iii) holes are used for H2 O oxidation reaction (WOR) to produce O2 and H+ to further promote ORR. Thus, MOC-AuNP/g-C3 N4 can be used as an efficient piezocatalyst to generate H2 O2 at rates up to 120.21 µmol g-1 h-1 in air and pure water without using sacrificial agents. This work proposes a new strategy for efficient piezocatalytic H2 O2 synthesis by constructing multiple active sites in semiconductor catalysts via hydrogen bonding, by enhancing substrate adsorption, rapid separation of electron-hole pairs and preventing rapid decomposition of H2 O2 .

5.
Small ; 19(33): e2301533, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36970781

RESUMO

Laminated graphene film has great potential in compact high-power capacitive energy storage owing to the high bulk density and opened architecture. However, the high-power capability is usually limited by tortuous cross-layer ion diffusion. Herein, microcrack arrays are fabricated in graphene films as fast ion diffusion channels, converting tortuous diffusion into straightforward diffusion while maintaining a high bulk density of 0.92 g cm-3 . Films with optimized microcrack arrays exhibit sixfold improved ion diffusion coefficient and high volumetric capacitance of 221 F cm-3 (240 F g-1 ), representing a critical breakthrough in optimizing ion diffusion toward compact energy storage. This microcrack design is also efficient for signal filtering. Microcracked graphene-based supercapacitor with 30 µg cm-2  mass loading exhibits characteristic frequency up to 200 Hz with voltage window up to 4 V, showing high promise for compact, high-capacitance alternating current (AC) filtering. Moreover, a renewable energy system is conducted using microcrack-arrayed graphene supercapacitors as filter-capacitor and energy buffer, filtering and storing the 50 Hz AC electricity from a wind generator into the constant direct current, stably powering 74 LEDs, demonstrating enormous potential in practical applications. More importantly, this microcracking approach is roll-to-roll producible, which is cost-effective and highly promising for large-scale manufacture.

6.
Nat Immunol ; 12(10): 966-74, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892173

RESUMO

Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.


Assuntos
Glicolipídeos/imunologia , Bactérias Gram-Positivas/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/química , Antígenos CD1d/fisiologia , Linhagem Celular , Glicolipídeos/química , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Chemistry ; 29(15): e202203166, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36478479

RESUMO

There is an endogenous electric field in living organisms, which plays a vital role in the development and regeneration of bone tissue. Therefore, self-powered piezoelectric material for bone repair has become hot research in recent years. However, the current piezoelectric materials for tissue regeneration still have the shortcomings of lack of biological activity and three-dimensional structure. Here, we proposed a three-dimensional polyurethane foam (PUF) scaffold coated with piezoelectric poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and modified by a calcium phosphate (CaP) mineralized coating. The preferred scaffold has an open circuit voltage and short circuit current output of 5 V and 200 nA. Combining the physical and chemical properties of the CaP coating, the piezoelectric signal of PVDF-HFP and the three-dimensional structure of PUF, the scaffold exhibits superior promotion of cell osteogenic differentiation and ectopic bone formation in vivo. The mechanism is attributed to an increase in intracellular Ca2+ levels in response to chemical and piezoelectric stimulation with the material. This research not only paves the way for the application of piezoelectric scaffolds to stimulate osteoblasts differentiation in situ, but also lays the foundation for the clinical treatment of long-term osteoporosis.


Assuntos
Osteogênese , Alicerces Teciduais , Polivinil/química , Diferenciação Celular
8.
Langmuir ; 39(40): 14474-14486, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774416

RESUMO

The efficient and safe manipulation of precision materials (such as thin and fragile wafers and glass substrates for flat panel displays) under complicated operating conditions with vacuum, high temperature, and low preload stress is an essential task for pan-semiconductor production lines. However, current manipulation approaches such as suction-based gripping (invalid under vacuum conditions) and mechanical clamping (stress concentration at the contact interfaces) are challenged to satisfy such complex requirements. Herein, fluororubber (FKM) is employed as an adhesive material to overcome such challenges due to its outstanding thermostability, availability under vacuum environments, and high adhesion at low contacting preloads. However, the adhesion of the FKM film decreases significantly with increasing temperature (decrease by 84.83% at 245 °C). Consequently, a micropatterned FKM-based dry adhesive (MFA) fabricated by laser etching is developed. The experimental results reveal that MFAs are efficient in restraining adhesion attenuation at high temperatures (minimum 15% decrease at 245 °C). The numerical analysis and in situ observations reveal the mechanism of the MFAs in restraining adhesion attenuation. The contamination-free and high adhesion at low contacting preload of MFAs can be of great interest in pan-semiconductor production lines that require complicated operating conditions on temperature, vacuum, and interface stress.

9.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896638

RESUMO

With the increasing concerns for the environment, the amount of the data monitored by wireless sensor networks (WSNs) is becoming larger and the energy required for data transmission is greater. However, sensor nodes have limited storage capacity and battery power. The WSNs are faced with the challenge of handling larger data volumes while minimizing energy consumption for transmission. To address this issue, this paper employs data compression technology to eliminate redundant information in the environmental data, thereby reducing energy consumption of sensor nodes. Additionally, an unmanned aerial vehicle (UAV)-assisted compressed data acquisition algorithm is put forward. In this algorithm, compressive sensing (CS) is introduced to decrease the amount of data in the network and the UAV serves as a mobile aerial base station for efficient data gathering. Based on CS theory, the UAV selectively collects measurements from a subset of sensor nodes along a route planned using the optimized greedy algorithm with variation and insertion strategies. Once the UAV returns, the sink node reconstructs sensory data from these measurements using the reconstruction algorithms. Extensive experiments are conducted to verify the performance of this algorithm. Experimental results show that the proposed algorithm has lower energy consumption compared to other approaches. Furthermore, we employ different data reconstruction algorithms to recover data and discover that the data can be better reconstructed in a shorter time.

10.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808399

RESUMO

High frequency wireless communication aims to provide ultra high-speed transmissions for various application scenarios. The waveform design for high frequency communication is challenging due to the requirements for high spectrum efficiency, as well as good hardware compatibility. With high flexibility and low peak-to-average power ratio (PAPR), discrete Fourier transformation spreading-based orthogonal frequency division multiplexing (DFT-s-OFDM) can be a promising candidate waveform. To further enhance the spectral efficiency, we integrate faster-than-Nyquist (FTN) signaling in DFT-s-OFDM, and find that the PAPR performance can also be improved. While FTN can introduce increased inter-symbol interference (ISI), in this paper, we deploy an isotropic orthogonal transform algorithm (IOTA) filter for FTN-enhanced DFT-s-OFDM, where the compact time-frequency structure of the IOTA filter can significantly reduce the ISI. Simulation results show that the proposed waveform is capable of achieving good performance in PAPR, bit error rate (BER) and throughput, simultaneously, with 3.5 dB gain in PAPR and 50% gain in throughput.

11.
Nanotechnology ; 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33626518

RESUMO

Polarized radiative semiconductor luminous chips have huge application potentials in lots of high value-added fields. Integrating a subwavelength grating is recognized as the most promising method for development of polarized chips, but still faces the challenge of lower polarized radiation performance. The paper proposed and developed a scattering-induced polarization enhancement light emitting diodes chips by directly nanoimprinting metal-containing nanoparticles-doping-grating on the top surface of a common flip-chips. The utilization rate of quantum well light emission on the developed polarized chips was improved more than 30%. More attractively, the doped scattering nanoparticles play as a scattering-induced polarization state converter that sandwiched in the top aluminum grating and bottom silver reflector on the chips. The originally non-radiative light with an electric field vector parallel to the grating lines is reflected back and forth among the sandwich until it changes to the perpendicular vibration mode to radiate outside the chips. Therefore, the polarization extinction ratio was greatly improved compared with the samples without doping.

12.
Nanotechnology ; 32(23): 235304, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739938

RESUMO

Polarized radiative luminous semiconductor chips have huge application potential in many highly value-added fields. The integration of a subwavelength grating is recognized to be the most promising method for the development of polarized chips, but still faces the challenge of low polarized radiative performance. This paper describes a proposal for, and the development of, a scattering-induced enhanced-polarization light-emitting diode chip by directly nanoimprinting a metal-containing nanoparticle-doped grating onto the top surface of a common flip chip. The rate at which quantum-well light emission is used by the developed polarized chip is improved by more than 30%. More attractively, the doped scattering nanoparticles function as a scattering-induced polarization state converter that is sandwiched in between the top aluminum grating and the bottom silver reflector of the chips. The originally non-radiated light, with an electric-field vector parallel to the grating lines, is reflected back and forth inside the sandwich until it changes to the perpendicular vibration mode and is radiated outside the chip. Therefore, the polarization extinction ratio is greatly improved, compared to undoped samples.

13.
Soft Matter ; 16(24): 5599-5608, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432311

RESUMO

With the combination of the passive adhesion generated by micro/nano-structures at their feet and the active mechanical stimulus of their toe muscles, geckos can stably walk on vertical walls and horizontal ceilings. Inspired by such stimuli-responsive systems in nature, an active adhesive soft gripper stimulated by low voltage (usually ≤6 V), consisting of a passive mushroom-like adhesive structure and an electrically active liquid crystal elastomer working as toe muscles, is proposed in this study. Through voltage on/off switching, reversible deformation can be generated for switchable adhesion, where high adhesion can be achieved under the action of a preload force accompanied by a 0 V voltage and low adhesion can be obtained under an exerted voltage. This gecko-inspired soft gripper was tested and found to be successful as a transport device for gripping/releasing objects with different features, such as a glass ball, a sample bottle, and a steel weight. To the best of our knowledge, the present study is the first to propose an electrically active gecko-inspired soft gripper for transferring objects with different surfaces by the control of low voltage, processing great application potential in industrial lines and daily life and providing a novel perspective on soft gripper design.

14.
Intern Med J ; 50(8): 985-992, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31566840

RESUMO

BACKGROUND: High baseline level of soluble suppression of tumourigenicity 2 (sST2) was an independent predictor of cardiovascular death and heart failure in ST-segment elevation myocardial infarction (STEMI). AIMS: To investigate the value of serum sST2 baseline levels in predicting myocardial reperfusion in patients with STEMI undergoing primary percutaneous coronary intervention (PPCI). METHODS: Consecutive STEMI patients who underwent PPCI within 12 h after the onset of chest pain were enrolled, and were divided into Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grading (TMPG) 0/1/2 group and TMPG 3 group based on post-procedural TMPG. Baseline clinical characteristics, lesions and procedural characteristics were compared. Univariate logistic regression and multivariate linear logistic analysis were performed to identify independent predictors of impaired myocardial reperfusion (TMPG 0/1/2). Receiver-operating characteristics curve (ROC) analysis of sST2 was performed to identify the optimum cut-off value for predicting the myocardial reperfusion. RESULTS: A total of 121 patients was enrolled in this study. Univariate logistic regression analysis showed that Killip II-III, high levels of sST2 and brain natriuretic peptide were risk factors of TMPG 0/1/2. Multivariable logistic regression analysis revealed that sST2 was an independent predictor of impaired myocardial reperfusion (odds ratio 12.318, 95% confidence interval 4.567-33.220, P < 0.001). ROC curve analysis showed that the area under curve of sST2 was 0.849, and the best cut-off value was 2.003 ng/mL, with a sensitivity of 89.2% and a specificity of 67.9%. CONCLUSION: The elevated levels of sST2 on admission were associated with impaired myocardial reperfusion in STEMI patients undergoing PPCI.


Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Biomarcadores , Angiografia Coronária , Humanos , Reperfusão Miocárdica , Prognóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia
15.
Environ Toxicol ; 35(8): 861-866, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32198912

RESUMO

Radon and its progeny have been classified as human class I carcinogens by the IARC. However, the mechanisms by which radon induces lung and other cancers, especially the radon-induced Warburg effect, have not been fully elucidated. The aim of this study was to investigate the role of the succinate dehydrogenase subunit A (SDHA)-mediated Warburg effect in (human bronchial epithelial) BEAS-2B cells with malignant transformations induced by long-term radon exposure. Soft agar colony formation and MMP-9 were increased following radon-induced malignant transformation. Additionally, we observed the Warburg effect in BEAS-2B cells following long-term radon exposure, evidenced by increases in the levels of glucose uptake, lactate, and lactate dehydrogenase (LDH). Following radon exposure, the expression of SDHA was decreased, while the levels of HIF-1α and hexokinase-2 (HK2) were increased. Our findings suggested that the SDHA-associated pathway may be involved in mediating the Warburg effect in radon-induced malignant transformation of BEAS-2B.


Assuntos
Poluentes Radioativos do Ar/toxicidade , Radônio/toxicidade , Brônquios/efeitos dos fármacos , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz/metabolismo , Testes de Toxicidade
16.
Chemistry ; 25(71): 16366-16376, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31602714

RESUMO

Increasing bone formation on the surfaces of implants such as screws, plates, or shims holds great significance for clinical medicine. However, osteogenesis implant coatings that mimic natural bone in terms of both their components and structural features are still lacking. Here we report the biomimetic interface of calcium phosphate (CaP) in a collagen matrix fabricated by controlled mineralization that presents biomimetic porous features. The porous CaP/collagen interface, with a thickness of about 1 µm, significantly enhances osteogenesis, as verified at both the gene and protein levels as well as by in vivo experiments. Taking advantage of the generality of the method, the biomimetic interface was prepared on a variety of substrates, including conductive substrates, 3D metal meshes, plastic or elastic substrates, and even on filter papers. The adjustability and generality of the method have enabled new characterization tests to be developed during experiments on cells and thus should greatly facilitate clinical medicine and tissue engineering.

17.
Nanotechnology ; 30(18): 185303, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665201

RESUMO

A stable and uniform electric field is to be generated even though a large mechanical deformation is the primary criterion for a transparent conductive film. This study proposes a protective integrated transparent conductive film (PITCF) including indium tin oxide (ITO), a silver nanowire (Ag NW) network, and a protective polydimethylsiloxane (PDMS) layer. A firmly bonding process of ITO/Ag NW/PDMS is established to avoid the failure of Ag NW to be oxidized by interlayer residual air or wrapped by liquid PDMS. Besides the good optical transparency, haze, and electrical conductivity as the only ITO film, the developed PITCF exhibits excellent bending resistance and mechanical stability. The ITO rupture fragments after bending deformation are firmly interconnected by the constrained Ag NWs. Even though the PITCF is bended more than 1000 cycles at a 6.5 mm bending distance, the changes in electrical resistance of PITCF are below 9.7%. Finally, an electroluminescent device with high bending resistance and uniform and high luminance is developed based on the designed PITCF.

18.
Angew Chem Int Ed Engl ; 58(30): 10142-10147, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31099947

RESUMO

Amine-functionalized polyhedral oligomeric silsesquioxane (POSS), the smallest, monodisperse cage-shaped silica cubic nanoparticle, is exceptionally interfacially active and can form assemblies that jam the toluene/water interface, locking in non-equilibrium shapes of one liquid phase in another. The packing density of the amine-functionalized POSS assembly at the water/toluene interface can be tuned by varying the concentration, the pH value, and the degree of POSS functionalization. Functionalized POSS gives a higher interface coverage, and hence a lower interfacial tension, than nanoparticle surfactants formed by interactions between functionalized nanoparticles and polymeric ligands. Hydrogen-bonded POSS surfactants are more stable at the interface, offering some unique advantages for generating Pickering emulsions over typical micron-sized colloidal particles and ligand-stabilized nanoparticle surfactants.

19.
Chemistry ; 24(52): 13830-13838, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29907974

RESUMO

The development of well-controlled drug carriers that are stable and highly effective for the delivery of anticancer agents is challenging. Herein, we report a novel pH-controlled drug delivery system, utilizing reducing graphene oxide (rGO)-polymer self-assembly films as carriers, for the preparation of effective drug nanorods and nanoparticles. In this system, the rGO-polymer carriers were constructed by the alternating assembly of poly-l-lysine (PLL) and polyaspartic acid (PASP) around the rGO sheets. Furthermore, the rGO-polymer cores, which possess a positively charged surface as the desired template, could assemble with negatively charged doxorubicin (DOX) via electrostatic interactions. The DOX embedding efficiency and the morphology of the drug nanocomposites could be controlled by the number of rGO-polymer bilayers and concentration of the rGO-polymer bilayers and the initial DOX concentration. Importantly, the release of DOX could be regulated by controlling the pH and by using a NIR laser. Under acidic conditions, the interactions between the PASP layer and DOX molecules can be broken, resulting in gradual release of the DOX molecules. Upon NIR irradiation, the release of DOX could be further accelerated and a photothermal effect from rGO induced. Cellular uptake and cytotoxicity experiments indicate that the drug nanocomposites possess effective anticancer activity. Thus, in this work, we present a useful strategy for the fabrication of pH-responsive drug nanocomposites for combined photothermal and chemical therapy. The nanocomposite can be used as a potential drug delivery system for practical cancer treatment.

20.
Malar J ; 17(1): 95, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475439

RESUMO

BACKGROUND: Continuous training of health workers is a key intervention to maintain their good performance and keep their vigilance during malaria elimination programmes. However, countries progressing toward malaria elimination have a largely decreased malaria disease burden, less frequent exposure of health workers to malaria patients, and new challenges in the epidemiology of the remaining malaria cases. Moreover, competing health priorities and usually a decline in resources and in political commitment also pose challenges to the elimination programme. As a consequence, the acceptability, sustainability, and impact of malaria training and education programmes face challenges. However, little is known of the perceptions and expectations of malaria training and education programmes of health workers being engaged in countries with malaria elimination programmes. METHODS: This qualitative study provides information on perceptions and expectations of health workers of malaria training programmes from China, which aims to malaria elimination by the year 2020. This study was embedded into a larger study on the challenges and lessons learned during the malaria surveillance strategy in China, involving 42 interviews with malaria experts, health staff, laboratory practitioners, and village doctors at the provincial, city, county, township, and village levels from Gansu province (northwestern China) and Jiangsu province (southeastern China). RESULTS: In the context of an increasing number of imported malaria cases in China, the majority of respondents emphasized the necessity and importance of such programmes and complained about a decreasing frequency of training courses. Moreover, they called for innovative strategies to improve the implementation and sustainability of the malaria training programmes until the elimination goal has been achieved. Perceptions and expectations of health workers from different health centres were quite different. Health workers from higher-level facilities were more concerned about technical training aspects, while health workers from periphery of the health system expected to receive more training on field work coordination and on specific public health actions with regard to case detection and focus investigation. CONCLUSIONS: There is need to guarantee an ongoing good training of health workers in China on malaria aspects until the year 2020 and probably beyond.


Assuntos
Agentes Comunitários de Saúde , Gerenciamento Clínico , Educação Médica Continuada/métodos , Malária/diagnóstico , Malária/tratamento farmacológico , Adulto , China , Feminino , Política de Saúde , Humanos , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA