Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Hum Mol Genet ; 32(9): 1539-1551, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611011

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted eye disease due to the degeneration of retinal ganglion cells (RGCs). Mitochondrial 11778G > A mutation is the most common LHON-associated mitochondrial DNA (mtDNA) mutation. Our recent studies demonstrated some LHON families manifested by synergic interaction between m.11778G > A mutation and YARS2 allele (c.572G > T, p.Gly191Val) encoding mitochondrial tyrosyl-tRNA synthetase. However, the RGC-specific effects of LHON-associated mtDNA mutations remain elusive and there is no highly effective therapy for LHON. Here, we generated patients-derived induced pluripotent stem cells (iPSCs) from fibroblasts derived from a Chinese LHON family (both m.11778G > A and c.572G > T mutations, only m.11778G > A mutation, and control subject). The c.572G > T mutation in iPSC lines from a syndromic individual was corrected by CRISPR/Cas9. Those iPSCs were differentiated into neural progenitor cells and subsequently induced RGC-like cells using a stepwise differentiation procedure. Those RGC-like cells derived from symptomatic individual harboring both m.11778G > A and c.572G > T mutations exhibited greater defects in neuronal differentiation, morphology including reduced area of soma, numbers of neurites and shortened length of axons, electrophysiological properties than those in cells bearing only m.11778G > A mutation. Furthermore, these RGC-like cells revealed more drastic reductions in oxygen consumption rates, levels of mitochondrial ATP and increasing productions of reactive oxygen species than those in other cell models. These mitochondrial dysfunctions promoted the apoptotic process for RGC degenerations. Correction of YARS2 c.572G > T mutation rescued deficiencies of patient-derived RGC-like cells. These findings provide new insights into pathophysiology of LHON arising from RGC-specific mitochondrial dysfunctions and step toward therapeutic intervention for this disease.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Tirosina-tRNA Ligase , Humanos , Alelos , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Mitocôndrias/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/fisiopatologia , Atrofia Óptica Hereditária de Leber/terapia , Tirosina-tRNA Ligase/genética
2.
J Neurochem ; 165(2): 196-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748629

RESUMO

Nociplastic pain is a severe health problem, while its mechanisms are still unclear. (R, S)-3,5-Dihydroxyphenylglycine (DHPG) is a group I metabotropic glutamate receptor (mGluR) agonist that can cause central sensitization, which plays a role in nociplastic pain. In this study, after intrathecal injection of 25 nmol DHPG for three consecutive days, whole proteins were extracted from the L4~6 lumbar spinal cord of mice 2 h after intrathecal administration on the third day for proteomics analysis. Based on the results, 15 down-regulated and 20 up-regulated proteins were identified in mice. Real-time quantitative PCR (RT-qPCR) and western blotting (WB) revealed that the expression of ectopic P granules protein 5 homolog (EPG5) mRNA and protein were significantly up-regulated compared with the control group, which was consistent with the proteomics results. Originally identified in the genetic screening of Caenorhabditis elegans, EPG5 is mainly involved in regulating autophagy in the body, and in our study, it was mainly expressed in spinal neurons, as revealed by immunohistochemistry staining. After the intrathecal injection of 8 µL adeno-associated virus (AAV)-EPG5 short hairpin RNA (shRNA) to knock down spinal EPG5, the hyperalgesia caused by DHPG was relieved. Altogether, these results suggest that EPG5 plays an important role in DHPG-induced pain sensitization in mice.


Assuntos
Grânulos de Ribonucleoproteínas de Células Germinativas , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Dor/metabolismo , Hiperalgesia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte Vesicular
3.
Mol Pain ; 19: 17448069231178487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211783

RESUMO

Recently, epigenetics involved in the regulation of gene expression has become a research hotspot. This study evaluated N4-acetylcytidine (ac4c) RNA acetylation in the spinal dorsal horn (SDH) of rats with cancer-induced bone pain (CIBP). The ac4C-specific RIP sequencing and NAT10-specific RIP sequencing were performed to identify the differences in ac4C acetylation and gene expression in the SDH between CIBP and sham groups, the relationship with the acetylation-modifying enzyme NAT10, and association analysis was performed. By interfering with the NAT10 expression, the relationship between some up-regulated genes and ac4C acetylation in CIBP was verified. In this study, we demonstrated that bone cancer increases the levels of NAT10 and the overall acetylation, inducing differential ac4C patterns in the SDH of rats. Through verification experiments, it was found that ac4C acetylation of some genes is regulated by NAT10, and differential ac4C patterns in RNA determine the expression of this RNA. We exposed that some CIBP-related gene expression was altered in the SDH of rats, which was regulated by differentially expressed ac4C acetylation.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Ratos , Animais , Acetilação , RNA/metabolismo , Dor do Câncer/genética , Dor do Câncer/complicações , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
4.
Mol Psychiatry ; 27(10): 4157-4171, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840800

RESUMO

Early sensory experiences interact with genes to shape precise neural circuits during development. This process is vital for proper brain function in adulthood. Neurological dysfunctions caused by environmental alterations and/or genetic mutation may share the same molecular or cellular mechanisms. Here, we show that early life bilateral whisker trimming (BWT) subsequently affects social discrimination in adult male mice. Enhanced activation of the hippocampal dorsal CA3 (dCA3) in BWT mice was observed during social preference tests. Optogenetic activation of dCA3 in naive mice impaired social discrimination, whereas chemogenetic silencing of dCA3 rescued social discrimination deficit in BWT mice. Hippocampal oxytocin (OXT) is reduced after whisker trimming. Neonatal intraventricular compensation of OXT relieved dCA3 over-activation and prevented social dysfunction. Neonatal knockdown of OXT receptor in dCA3 mimics the effects of BWT, and cannot be rescued by OXT treatment. Social behavior deficits in a fragile X syndrome mouse model (Fmr1 KO mice) could also be recovered by early life OXT treatment, through negating dCA3 over-activation. Here, a possible avenue to prevent social dysfunction is uncovered.


Assuntos
Síndrome do Cromossomo X Frágil , Ocitocina , Animais , Masculino , Camundongos , Proteína do X Frágil da Deficiência Intelectual , Hipocampo/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Comportamento Social
5.
J Neurochem ; 159(3): 512-524, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338322

RESUMO

Studies have verified that Fragile X mental retardation protein (FMRP), an RNA-binding protein, plays a potential role in the pathogenesis of formalin- and (RS)-3,5-dihydroxyphenylglycine-induced abnormal pain sensations. However, the role of FMRP in inflammatory pain has not been reported. Here, we showed an increase in FMRP expression in the spinal dorsal horn (SDH) in a rat model of inflammatory pain induced by complete Freund's adjuvant (CFA). Double immunofluorescence staining revealed that FMRP was mainly expressed in spinal neurons and colocalized with proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)]. After consecutive intrathecal injection of fragile X mental retardation 1 small interfering RNA for 3 days post-CFA injection, FMRP expression in the SDH was reduced, and CFA-induced hyperalgesia was decreased. In addition, the CFA-induced increase in spinal TNF-α and IL-6 production was significantly suppressed by intrathecal administration of fragile X mental retardation 1 small interfering RNA. Together, these results suggest that FMRP regulates TNF-α and IL-6 levels in the SDH and plays an important role in inflammatory pain.


Assuntos
Citocinas/biossíntese , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Inflamação/genética , Inflamação/patologia , Dor/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Adjuvante de Freund , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Injeções Espinhais , Interleucina-6/metabolismo , Masculino , Dor/induzido quimicamente , Dor/genética , Células do Corno Posterior/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
6.
J Neurosci ; 39(46): 9130-9144, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31604834

RESUMO

Neuropathic pain is one of the most common and notorious neurological diseases. The changes in cerebral structures after nerve injury and the corresponding contributions to neuropathic pain are not well understood. Here we found that the majority of glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2Glu) were inhibited by painful stimulation in male mice. Optogenetic manipulation revealed that these neurons were tonically involved in the inhibitory modulation of multimodal nociception. We further identified the projections to GABAergic neurons in the zona incerta (ZIGABA) mediated the pain inhibitory role. However, MCC Cg2Glu became hypoactive after nerve injury. Although a brief activation of the MCC Cg2Glu to ZIGABA circuit was able to relieve the aversiveness associated with spontaneous ongoing pain, consecutive activation of the circuit was required to alleviate neuropathic allodynia. In contrast, glutamatergic neurons in the area 1 of MCC played opposite roles in pain modulation. They became hyperactive after nerve injury and only consecutive inhibition of their activity relieved allodynia. These results demonstrate that MCC Cg2Glu constitute a component of intrinsic pain inhibitory circuitry and their hypoactivity underlies neuropathic pain. We propose that selective and persistent activation of the MCC Cg2Glu to ZIGABA circuit may serve as a potential therapeutic strategy for this disease.SIGNIFICANCE STATEMENT Glutamatergic neurons in the area 2 of midcingulate cortex (MCC Cg2Glu) are tonically involved in the intrinsic pain inhibition via projecting to GABAergic neurons in the zona incerta. They are hypoactive after nerve injury. Selective activation of the circuit compensates the reduction of its analgesic strength and relieves neuropathic pain. Therefore, MCC Cg2Glu and the related analgesic circuit may serve as therapeutic targets for neuropathic pain. In contrast, MCC Cg1Glu have an opposite role in pain modulation and become hyperactive after nerve injury. The present study provides novel evidence for the concept that neuropathic pain is associated with the dysfunction of endogenous pain modulatory system and new perspective on the treatment of neuropathic pain.


Assuntos
Neurônios GABAérgicos/fisiologia , Giro do Cíngulo/fisiopatologia , Neuralgia/fisiopatologia , Dor/fisiopatologia , Zona Incerta/fisiopatologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética , Percepção da Dor/fisiologia
7.
Mol Pain ; 16: 1744806920928619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32496847

RESUMO

Chronic pain has detrimental effects on one's quality of life. However, its treatment options are very limited, and its underlying pathogenesis remains unclear. Recent research has suggested that fragile X mental retardation protein is involved in the development of chronic pain, making it a potential target for prevention and treatment. The current review of literature will examine the function of fragile X mental retardation protein and its associated pathways, through which we hope to gain insight into how fragile X mental retardation protein may contribute to nociceptive sensitization and chronic pain.


Assuntos
Dor Crônica/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Humanos , Canais Iônicos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Nano Lett ; 18(7): 4148-4155, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916253

RESUMO

Externally controlling the excitation of a neuronal subset through ion channels activation can modulate the firing pattern of an entire neural circuit in vivo. As nanovalves in the cell membrane, ion channels can be opened by light (optogenetics) or ultrasonic (sonogenetics) means. A thoroughly analyzed force sensor is the Escherichia coli mechano sensitive channel of large conductance (MscL). Here we expressed MscL in rat hippocampal neurons in a primary culture and showed that it could be activated by low-pressure ultrasound pulses. The gain-of-function mutation, I92L, sensitized MscL's sonic response, triggering action potentials at a peak negative pressure as low as 0.25 MPa. Further, the I92L MscL reliably elicited individual spikes by timed brief pulses, making excitation programmable. Because MscL opens to tension in the lipid bilayer, requiring no other proteins or ligands, it could be developed into a general noninvasive sonogenetic tool to manipulate the activities of neurons or other cells and potential nanodevices.


Assuntos
Membrana Celular/genética , Proteínas de Escherichia coli/química , Canais Iônicos/química , Neurônios/metabolismo , Sequência de Aminoácidos/genética , Animais , Fenômenos Biomecânicos , Membrana Celular/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Canais Iônicos/genética , Bicamadas Lipídicas/metabolismo , Neurônios/patologia , Cultura Primária de Células , Ratos , Ultrassom
9.
Adv Exp Med Biol ; 1099: 115-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306519

RESUMO

Spontaneous pain is the major complain for the patients to see a doctor. Human imaging studies presented that spontaneous pain is mainly associated with activity changes in medial pain pathway, while broader brain regions were activated by allodynia pain. On behavioral level, temporally disassociation between the evoked pain and spontaneous pain was observed; these data gave a hint that the spontaneous pain and evoked pain may be mediated by different neuronal mechanisms. And more attentions should be paid to the spontaneous pain to treat the chronic pain in the future.


Assuntos
Dor Crônica/fisiopatologia , Hiperalgesia/fisiopatologia , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Medição da Dor
10.
Anesth Analg ; 124(4): 1330-1338, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28002166

RESUMO

BACKGROUND: Both pharmacologic and genetic approaches have been used to study the involvement of the muscarinic acetylcholine system in the regulation of chronic pain. Previous studies suggest that the M2 and M4 subtypes of muscarinic acetylcholine receptors (mAChRs) are important targets for the development of chronic pain. (5R,6R)6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] octane (PTAC) has agonist effects on muscarinic M2 and M4 receptors and antagonist effects on muscarinic M1, M3, and M5 receptors. However, its analgesic effects have been less studied. METHODS: Male C57B L/6 mice were anesthetized, and left common peroneal nerve (CPN) ligation was performed to induce neuropathic pain. Before and after the application of PTAC systemically or specifically to the anterior cingulate cortex (ACC), the withdrawal thresholds to mechanical stimulation and static weight balance were measured, and the effects of PTAC on the conditioned place preference (CPP) were further evaluated. Western blotting was used to examine the expression of M1 and M2 in the striatum, ACC, and ventral tegmental area. RESULTS: The application of PTAC ([i.p.] intraperitoneal injection) increased the paw withdraw threshold in both the early (0.05 mg/kg, mean difference [95% confidence interval, CI]: 0.19 [0.05-0.32]; 0.10 mg/kg: mean difference [95% CI]: 0.34 [0.22-0.46]) and the late phases (0.05 mg/kg: mean difference [95% CI]: 0.45 [0.39-0.50]; 0.1 mg/kg: mean difference [95% CI]: 0.44 [0.37-0.51]) after nerve injury and rebalanced the weight distribution on the hind paws of mice (L/R ratio: before, 0.56 ± 0.03. 0.05 mg/kg, 1.00 ± 0.04, 0.10 mg/kg, 0.99 ± 0.03); however, it failed to induce place preference in the CPP (0.05 mg/kg, 2-way analysis of variance, P > .05; 0.2 mg/kg, 2-way analysis of variance, P > .05,). At the same doses, the analgesic effects at D3-5 lasted longer than the effects at D14-16. This may be due to the down-regulation of the M2 and M1 in tested brain regions. CONCLUSIONS: These observations suggested that PTAC has analgesic effects on the neuropathic pain induced by nerve injury.


Assuntos
Analgésicos/administração & dosagem , Compostos Bicíclicos com Pontes/administração & dosagem , Modelos Animais de Doenças , Neuralgia/tratamento farmacológico , Tiadiazóis/administração & dosagem , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Neuralgia/metabolismo , Neuralgia/patologia , Receptores Muscarínicos/biossíntese , Resultado do Tratamento
11.
J Neurosci ; 34(32): 10675-87, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100600

RESUMO

Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment.


Assuntos
Cognição/fisiologia , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Neurônios/fisiologia , Doenças do Sistema Nervoso Periférico/patologia , Transmissão Sináptica/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Valina/análogos & derivados , Valina/farmacologia
13.
Nature ; 461(7267): 1122-5, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847264

RESUMO

Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3', 5'-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.


Assuntos
AMP Cíclico/metabolismo , Hipocampo/metabolismo , Sistemas do Segundo Mensageiro , Privação do Sono/fisiopatologia , Animais , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Inibidores da Fosfodiesterase 4 , Rolipram/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
14.
Neural Plast ; 2015: 453170, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697233

RESUMO

Chronic pain is a major health issue and most patients suffer from spontaneous pain. Previous studies suggest that Huperzine A (Hup A), an alkaloid isolated from the Chinese herb Huperzia serrata, is a potent analgesic with few side effects. However, whether it alleviates spontaneous pain is unclear. We evaluated the effects of Hup A on spontaneous pain in mice using the conditioned place preference (CPP) behavioral assay and found that application of Hup A attenuated the mechanical allodynia induced by peripheral nerve injury or inflammation. This effect was blocked by atropine. However, clonidine but not Hup A induced preference for the drug-paired chamber in CPP. The same effects occurred when Hup A was infused into the anterior cingulate cortex. Furthermore, ambenonium chloride, a competitive inhibitor of acetylcholinesterase, also increased the paw-withdrawal threshold but failed to induce place preference in CPP. Therefore, our data suggest that acetylcholinesterase in both the peripheral and central nervous systems is involved in the regulation of mechanical allodynia but not the spontaneous pain.


Assuntos
Alcaloides/administração & dosagem , Analgésicos/administração & dosagem , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Receptores Muscarínicos/fisiologia , Sesquiterpenos/administração & dosagem , Acetilcolinesterase/metabolismo , Cloreto de Ambenônio/administração & dosagem , Animais , Atropina/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Dor Crônica/prevenção & controle , Clonidina/administração & dosagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/complicações , Aprendizagem/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/administração & dosagem , Limiar da Dor/efeitos dos fármacos , Nervo Fibular/lesões
15.
J Neurosci ; 32(3): 1082-95, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22262906

RESUMO

A variety of studies have implicated the anterior cingulate cortex (ACC) in fear, including permanent storage of fear memory. Recent pharmacological and genetic studies indicate that early synaptic plasticity in the ACC may also contribute to certain forms of fear memory at early time points. However, no study has directly examined the possible changes in neuronal activity of ACC neurons in freely behaving mice during early learning. In the present study, we examined the neural responses of the ACC during trace fear conditioning. We found that ACC putative pyramidal and nonpyramidal neurons were involved in the termination of fear behavior ("un-freezing"), and the spike activity of these neurons was reduced during freezing. Some of the neurons were also found to acquire un-freezing locked activity and change their tuning. The results implicate the ACC neurons in fear learning and controlling the abolition of fear behavior. We also show that the ACC is important for making cue-related fear memory associations in the trace fear paradigm as measured with tone-evoked potentials and single-unit activity. Collectively, our findings indicate that the ACC is involved in predicting future aversive events and terminating fear during trace fear.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Comportamento Exploratório/fisiologia , Medo/fisiologia , Giro do Cíngulo/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Estimulação Elétrica/efeitos adversos , Eletroencefalografia/métodos , Eletromiografia/métodos , Potenciais Evocados/fisiologia , Análise de Fourier , Reação de Congelamento Cataléptica/fisiologia , Giro do Cíngulo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
16.
Semin Cell Dev Biol ; 22(5): 521-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21704719

RESUMO

N-methyl-d-aspartate receptors (NMDA receptors) play critical roles in brain functions and diseases. The expression, trafficking, synaptic location and function of different NMDA receptor subtypes are not static, but regulated dynamically in a cell-specific and synapse-specific manner during physiological and pathological conditions. In this review, we will examine recent evidence on the post-translational modulation of NMDA receptors subunit, in particular GluN2B subunit, such as phosphorylation, palmitoylation, and ubiquitination. In parallel, we will overview the roles of these modifications of GluN2B-NMDA receptor subtype in physiological functions, such as learning and memory, and pathophysiological conditions, such as chronic pain, ischemia and neurodegenerative diseases.


Assuntos
Dor Crônica/fisiopatologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Lipoilação , Doenças Neurodegenerativas , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ubiquitinação
17.
J Neurochem ; 126(5): 636-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786569

RESUMO

Recent investigations into the mechanisms mediating itch transmission have focused on spinal mechanisms, whereas few studies have investigated the role of the cerebral cortex in itch-related behaviors. Human imaging studies show that several cortical regions are active in correspondence with itch, including the anterior cingulate cortex (ACC). We present here evidence of cortical modulation of pruritogen-induced scratching behavior. We combine pharmacological, genetic, and electrophysiological approaches to show that cortical GluK1-containing kainate (KA) receptors are involved in scratching induced by histamine and non-histamine-dependent itching stimuli. We further show that scratching corresponds with enhanced excitatory transmission in the ACC through KA receptor modulation of inhibitory circuitry. In addition, we found that inhibiting GluK1-containing KA receptors in the ACC also reduced behavioral nociceptive responses induced by formalin. Our results reveal a new role of the cortex in pruritogen-induced scratching.


Assuntos
Córtex Cerebral/fisiologia , Prurido/fisiopatologia , Receptores de Ácido Caínico/fisiologia , Animais , Antipruriginosos/farmacologia , Fenômenos Eletrofisiológicos , Genes fos/genética , Genes fos/fisiologia , Histamina/farmacologia , Histamina/fisiologia , Imuno-Histoquímica , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Medição da Dor/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Prurido/induzido quimicamente , Prurido/psicologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/genética , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
18.
Sci Rep ; 13(1): 15059, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700003

RESUMO

Despite being significant in various diseases, including cancers, the impact of copper metabolism on osteosarcoma (OS) remains largely unexplored. This study aimed to use bioinformatics analyses to identify a reliable copper metabolism signature that could improve OS patient prognosis prediction, immune landscape understanding, and drug sensitivity. Through nonnegative matrix factorization (NMF) clustering, we revealed distinct prognosis-associated clusters of OS patients based on copper metabolism-related genes (CMRGs), showing differential gene expression linked to immune processes. The risk model, comprising 13 prognostic CMRGs, was established using least absolute shrinkage and selection operator (LASSO) Cox regression, closely associated with the OS microenvironment's immune situation and drug sensitivity. Furthermore, we developed an integrated nomogram, combining the risk score and clinical traits to quantitatively predict OS patient prognosis. The calibration plot, timeROC, and timeROC analyses demonstrated its predictable accuracy and clinical usefulness. Finally, we identified three independent prognostic signatures for OS patients: COX11, AP1B1, and ABCB6. This study confirmed the involvement of CMRGs in OS patient prognosis, immune processes, and drug sensitivity, suggesting their potential as promising prognostic signatures and therapeutic targets for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cobre , Osteossarcoma/genética , Prognóstico , Nomogramas , Neoplasias Ósseas/genética , Microambiente Tumoral/genética , Complexo 1 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras
19.
Front Mol Neurosci ; 16: 1153870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152432

RESUMO

The deficit of fragile X messenger ribonucleoprotein (FMRP) leads to intellectual disability in human and animal models, which also leads to desensitization of pain after nerve injury. Recently, it was shown that the protein arginine methyltransferases 1 (PRMT1) regulates the phase separation of FMRP. However, the role of PRMT1 in pain regulation has been less investigated. Here we showed that the downregulation of PRMT1 in the anterior cingulate cortex (ACC) contributes to the development of peripheral pain hypersensitivity. We observed that the peripheral nerve injury decreased the expression of PRMT1 in the ACC; knockdown of the PRMT1 via shRNA in the ACC decreased the paw withdrawal thresholds (PWTs) of naïve mice. Moreover, the deficits of FMRP abolished the effects of PRMT1 on pain sensation. Furthermore, overexpression of PRMT1 in the ACC increased the PWTs of mice with nerve injury. These observations indicate that the downregulation of cingulate PRMT1 was necessary and sufficient to develop peripheral hypersensitivity after nerve injury. Thus, we provided evidence that PRMT1 is vital in regulating peripheral pain hypersensitivity after nerve injury via the FMRP.

20.
J Pharm Anal ; 13(7): 745-759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577389

RESUMO

Pathological dry skin is a disturbing and intractable healthcare burden, characterized by epithelial hyperplasia and severe itch. Atopic dermatitis (AD) and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing (scRNA-seq). However, scRNA-seq analysis of the dry skin mouse model (acetone/ether/water (AEW)-treated model) is still lacking. Here, we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell (PBC) state that exclusively expresses transcription factor CUT-like homeobox 1 (Cux1). Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases (CDKs) and cyclins. Clinically, Cux1+ PBCs were increased in patients with psoriasis, suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia. This study presents a systematic knowledge of the transcriptomic changes in a chronic dry skin mouse model, as well as a potential therapeutic target against dry skin-related dermatoses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA