Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Eur J Nutr ; 63(1): 291-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870657

RESUMO

PURPOSE: Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS: Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS: The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION: FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.


Assuntos
Antioxidantes , Ácido Fólico , Ratos , Masculino , Animais , Ácido Fólico/farmacologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Estresse Oxidativo , Apoptose , 8-Hidroxi-2'-Desoxiguanosina , Telômero
2.
Postepy Dermatol Alergol ; 41(1): 113-120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38533361

RESUMO

Introduction: Psoriasis is a T cell-mediated polygenic chronic inflammatory disease. Interleukin (IL)-17A plays a major role in psoriasis pathogenesis. Secukinumab is a high-affinity human monoclonal antibody against IL-17A. Aim: This article explored efficacy and safety of secukinumab plus tretinoin in moderate to severe psoriasis (MSP) vulgaris, and assessed metabolism, liver function, and inflammation. Material and methods: A total of 135 patients diagnosed with moderate or severe psoriasis vulgaris were enrolled and randomized into three groups at a 1 : 1 : 1 ratio, receiving treatment with rretinoin, secukinumab, or combination therapy for a duration of 16 weeks. Psoriasis area and severity index (PASI) scores, serum T lymphocyte subsets, glucose, lipid, and uric acid (UA) metabolism, liver enzymes, and inflammatory factors (IFs) were measured. Results: Following the therapy, subjects had decreased PASI scores, increased serum CD3+, CD4+, and CD4+/CD8+, decreased serum CD8+, and decreased serum UA and IL-2, IL-6, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor (TNF)-α (p < 0.05). Total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, apolipoproteins A1, B, fasting blood glucose, alanine transaminase, aspartate transaminase, and alkaline phosphatase had no obvious differences among the subjects (p > 0.05). As against the Tretinoin and the Secukinumab groups, the PASI score was visiblysmaller, the changes in serum T lymphocyte subsets were more obvious, and serum UA and IFs were lower in the Combination group following the therapy (p < 0.05). Conclusions: Secukinumab combined with tretinoin is more effective in MSP vulgaris, which can visibly reduce inflammatory response without affecting glucose and lipid metabolism and liver function.

3.
Cereb Cortex ; 32(2): 286-297, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34223882

RESUMO

Folic acid (FA) has been reported to inhibit astrocyte apoptosis and improve aging-induced disorders; however, its role in telomere attrition remains unclear. In present study, 4-month-old senescence-accelerated mouse prone 8 (SAMP8) mice were assigned to four treatment groups for the in vivo experiment: FA-deficient diet (FA-D) group, FA-normal diet (FA-N) group, low FA-supplemented diet (FA-L) group, and high FA-supplemented diet (FA-H) group. These mice were euthanized when 10 months old. There was also a young SAMP8 (4 months old) control group (Con-Y) fed with FA-normal diet. In in vitro study, primary cultures of astrocytes from hippocampus and cerebral cortex were incubated for five generations with various concentrations of FA (0-40 µM) and were assigned to five groups: FA 0 µM (generation 5), FA 10 µM (generation 5), FA 20 µM (generation 5), FA 40 µM (generation 5), and FA 10 µM (generation 1). The results showed that FA supplementation inhibited aging-induced astrocytosis, astrocyte apoptosis, neurodegeneration, and prevented telomere attrition in hippocampus and cortex of SAMP8 mice. FA supplementation also decreased apoptosis and telomere attrition, and increased telomerase activity, in primary cultures of astrocytes. These results showed that it may be one of the mechanisms that FA inhibiting aging-induced apoptosis of astrocyte by alleviating telomere attrition.


Assuntos
Astrócitos , Ácido Fólico , Envelhecimento , Animais , Apoptose , Ácido Fólico/farmacologia , Camundongos , Telômero
4.
Immun Ageing ; 20(1): 1, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604719

RESUMO

BACKGROUND: Diet and chronic inflammation might play a major role in the pathogenesis of mild cognitive impairment (MCI). In addition, peripheral blood leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNAcn) might mediate the relationship between inflammation and MCI risk. The purpose of the present study is to evaluate whether inflammatory potential of diet assessed by dietary inflammatory index (DII), chronic inflammation, peripheral blood LTL, and mtDNAcn were associated with the risk of MCI. RESULTS: A population-based cohort study was conducted with a total of 2944 participants. During a median follow-up of 2 years, 438 (14.90%) individuals were new-onset MCI. After adjustment, a higher score of DII (hazard ratio [HR]: 1.056, 95% CI: 1.005, 1.109), a higher log systemic immune inflammation index (SII) (HR: 1.333, 95% CI: 1.089, 1.633) and log system inflammation response index (SIRI) (HR: 1.487, 95% CI: 1.024, 2.161) predicted elevated risk of MCI. An increased mtDNAcn (HR: 0.843, 95% CI: 0.712, 0.997), but not LTL, predicted a decreased risk of MCI. Negative associations of log SII with LTL (ß:-0.359, 95% CI: -0.445, -0.273) and mtDNAcn (ß:-0.048, 95% CI: -0.090, -0.006) were found. Additionally, negative associations of log SIRI with LTL (ß: -0.035, 95% CI: -0.052, -0.017) and mtDNAcn (ß:-0.136, 95% CI: -0.216, -0.056) were also found. Path analysis suggested that SIRI, LTL, and mtDNAcn, in series, have mediation roles in the association between DII score and MCI risk. CONCLUSIONS: Higher DII, SII, and SIRI might predict a greater risk of MCI, while a longer LTL and an increased mtDNAcn were linked to a reduced risk of MCI among the older population. LTL and mtDNAcn could play mediation roles in the association between DII and MCI risk.

5.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833955

RESUMO

Research demonstrated that folate deficiency in either the mother or father could impact the biological functions of the offspring's of neural cells. Folate deficiency can also impair the methionine cycle, thus contributing to the conversion of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH), which could potentially cause damage to the central nervous system. The study focused on the effect of parental folate deficiency on neural cell apoptosis in offspring neonatal rats and whether it is mediated by the levels of SAM and SAH in brains. The experimental design was conducted by feeding female and male Sprague Dawley (SD) rats with either folate-deficient or folate-normal diets, sacrificing the offspring within 24 h and isolating their brain tissue. Rats were divided into four groups: the maternal-folate-deficient and paternal-folate-deficient (D-D) group; the maternal-folate-deficient and paternal-folate-normal (D-N) group; the maternal-folate-normal and paternal-folate-deficient (N-D) group; and the maternal-folate-normal and paternal-folate-normal (N-N) group. There was down-regulation of B-cell lymphoma 2 (Bcl-2) expression, up-regulation of Bcl-2-associated X protein (Bax) and Caspase-3 expression of neural cells, and pathological changes in the brain ultrastructure, as well as decreased SAM levels, increased SAH levels, and a decreased SAM/SAH ratio in the rat fetal brain via parental folate deficiency. In conclusion, parental folate deficiency could induce the apoptosis of neural cells in neonatal offspring rats, while biparental folate deficiency had the greatest effect on offspring, and the unilateral effect was greater in mothers than in fathers. This process may be mediated by the levels of SAM and SAH in the rat fetal brain.


Assuntos
Deficiência de Ácido Fólico , Ratos , Animais , Masculino , Feminino , Animais Recém-Nascidos , Proteína X Associada a bcl-2/genética , Caspase 3 , Ratos Sprague-Dawley , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico , Apoptose/fisiologia , S-Adenosilmetionina/metabolismo
6.
Eur J Neurol ; 29(5): 1385-1393, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104029

RESUMO

BACKGROUND AND PURPOSE: Sleep characteristics, including taking a nap and sleep apnea, have been proven to have effects on cognitive function, and apolipoprotein E polymorphism ε4 (APOEε4) has been confirmed to be a risk factor for mild cognitive impairment (MCI), but epidemiological studies linking sleep characteristics and APOEε4 are scarce. We aimed to explore the longitudinal association between sleep characteristics and MCI in an overall cohort, in APOEε4 carriers and in APOEε4 non-carriers. METHODS: We included 3053 older adults from the Tianjin Elderly Nutrition and Cognition Cohort (TENCC) study, recruited from March 2018 to June 2019, and followed up from March 2021 to June 2021. All participants underwent detailed neuropsychological evaluation that allowed psychometric MCI classification. Information on self-reported sleep characteristics was gathered via face-to-face interviews. Crude and multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard regression models. RESULTS: In the multivariable-adjusted models, taking a nap at noon was associated with decreased risk of MCI in all participants (yes vs. no: HR 0.723, 95% CI 0.592, 0.883) and in APOEε4 non-carriers (yes vs. no: HR 0.719, 95% CI 0.576, 0.897). Sleep apnea was associated with increased risk of MCI in all participants (vs. good: HR 2.213, 95% CI 1.171, 4.180) and in APOEε4 non-carriers (vs. good: HR 2.217, 95% CI 1.085, 4.529). CONCLUSIONS: This study suggests that taking a nap at noon might be a potential protective factor against development of MCI in APOEε4 non-carriers, and sleep apnea might be associated with increased incidence of MCI in APOEε4 non-carriers.


Assuntos
Disfunção Cognitiva , Síndromes da Apneia do Sono , Idoso , Apolipoproteína E4/genética , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Estudos de Coortes , Humanos , Testes Neuropsicológicos , Estudos Prospectivos , Sono/genética
7.
Eur J Neurol ; 29(10): 2913-2924, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735052

RESUMO

BACKGROUND: The longitudinal association between serum folate concentrations and the risk of cognitive impairment remains unclear in populations with low folate levels. We examined the association between serum folate concentrations and mild cognitive impairment (MCI) in older adults in China, where mandatory fortification of foods with folic acid has not been implemented. We further explored if homocysteine (Hcy) and leukocyte telomere length (LTL) mediate the association between serum folate and MCI. METHODS: We performed a longitudinal analysis of 3974 participants aged ≥60 years from the Tianjin Elderly Nutrition and Cognition (TENC) cohort study. The associations between serum folate level and the risk of cognitive impairment overall and stratified by apolipoprotein E (APOE) ε4 genotypes were evaluated using multivariable Cox proportional hazards models. The mediating effects of Hcy and LTL on the folate-MCI association were explored via a path analysis approach. RESULTS: Within a 3-year follow-up, we documented 560 incident MCI cases. After multivariable adjustment, higher serum folate concentrations were associated with lower incidence of MCI, with hazard ratios (95% confidence interval) across quartiles of folate (from lowest to highest concentrations) of 1.00 (reference), 0.66 (0.52, 0.83), 0.57 (0.45, 0.73), 0.66 (0.52, 0.84), respectively (p for trend <0.001). In mediation analyses, the status of serum folate deficiency and MCI were correlated via two intermediary pathways, Hcy and Hcy-telomere (p < 0.05). CONCLUSIONS: Lower folate concentrations, independently of APOE genotype, were associated with increased risk of MCI among elderly Chinese people, a population with relatively low folate intake. Our data were compatible with the mediation hypothesis that the association between folate status and MCI was mediated by Hcy and LTL.


Assuntos
Disfunção Cognitiva , Ácido Fólico , Idoso , Apolipoproteína E4 , China/epidemiologia , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Homocisteína , Humanos , Estudos Prospectivos , Vitamina B 12
8.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805953

RESUMO

Early life stage folate status may influence neurodevelopment in offspring. The developmental origin of health and disease highlights the importance of the period of the first 1000 days (from conception to 2 years) of life. This study aimed to evaluate the effect of early life stage folic acid deficiency on de novo telomere synthesis, neurobehavioral development, and the cognitive function of offspring rats. The rats were divided into three diet treatment groups: folate-deficient, folate-normal, and folate-supplemented. They were fed the corresponding diet from 5 weeks of age to the end of the lactation period. After weaning, the offspring rats were still fed with the corresponding diet for up to 100 days. Neurobehavioral tests, folic acid and homocysteine (Hcy) levels, relative telomere length in brain tissue, and uracil incorporation in telomere in offspring were measured at different time points. The results showed that folic acid deficiency decreased the level of folic acid, increased the level of Hcy of brain tissue in offspring, increased the wrong incorporation of uracil into telomeres, and hindered de novo telomere synthesis. However, folic acid supplementation increased the level of folic acid, reduced the level of Hcy of brain tissue in offspring, reduced the wrong incorporation of uracil into telomeres, and protected de novo telomere synthesis of offspring, which was beneficial to the development of early sensory-motor function, spatial learning, and memory in adolescence and adulthood. In conclusion, early life stage folic acid deficiency had long-term inhibiting effects on neurodevelopment and cognitive function in offspring.


Assuntos
Deficiência de Ácido Fólico , Animais , Cognição , Suplementos Nutricionais , Feminino , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/metabolismo , Ratos , Telômero/metabolismo , Uracila
9.
Cereb Cortex ; 29(8): 3390-3397, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30137237

RESUMO

Maternal folic acid supplementation during pregnancy is associated with improved cognitive performances in offspring. However, the effect of supplementation on offspring's neurogenesis and synaptogenesis is unknown, and whether supplementation should be continued throughout pregnancy is controversial. In present study, 3 groups of female rats were fed a folate-normal diet, folate-deficient diet, or folate-supplemented diet from 1 week before mating until the end of pregnancy. A fourth group fed folate-normal diet from 1 week before mating until mating, then fed folate-supplemented diet for 10 consecutive days, then fed folate-normal diet until the end of pregnancy. Offspring were sacrificed on postnatal day 0 for measurement of neurogenesis and synaptogenesis by immunofluorescence and western blot. Additionally neural stem cells (NSCs) were cultured from offspring's hippocampus for immunocytochemical measurement of their rates of proliferation and neuronal differentiation. The results demonstrated that maternal folic acid supplementation stimulated hippocampal neurogenesis by increasing proliferation and neuronal differentiation of NSCs, and also enhanced synaptogenesis in cerebral cortex of neonatal offspring. Hippocampal neurogenesis was stimulated more when supplementation was continued throughout pregnancy instead of being limited to the periconceptional period. In conclusion, maternal folic acid supplementation, especially if continued throughout pregnancy, improves neurogenesis and synaptogenesis in neonatal offspring.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ácido Fólico/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Animais , Animais Recém-Nascidos , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular , Duração da Terapia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Gravidez , Cultura Primária de Células , Distribuição Aleatória , Ratos , Sinaptofisina/efeitos dos fármacos , Sinaptofisina/metabolismo
10.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861819

RESUMO

Astrocytes are the most widely distributed cells in the brain, and astrocyte apoptosis may play an important role in the pathogenesis of neurodegenerative diseases. Folate is required for the normal development of the nervous system, but its effect on astrocyte apoptosis is unclear. In this study, we hypothesized that folic acid (the therapeutic form of folate) decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition. Primary cultures of astrocytes were incubated for 12 days with various concentrations of folic acid (0-40 µmol/L), then cell proliferation, apoptosis, intracellular folate concentration, intracellular homocysteine (Hcy) concentration, intracellular reactive oxygen species (ROS) levels, telomeric DNA oxidative damage, and telomere length were determined. The results showed that folic acid deficiency decreased intracellular folate, cell proliferation, and telomere length, whereas it increased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In contrast, folic acid dose-dependently increased intracellular folate, cell proliferation, and telomere length but it decreased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In conclusion, folic acid inhibited apoptosis in astrocytes. The underlying mechanism for this protective effect may be that folic acid decreased oxidative stress and thereby prevented telomeric DNA oxidative damage and telomere attrition.


Assuntos
Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Ácido Fólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Animais , Antioxidantes/farmacologia , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Telômero/efeitos dos fármacos , Telômero/metabolismo
11.
Wei Sheng Yan Jiu ; 48(5): 795-798, 2019 Sep.
Artigo em Zh | MEDLINE | ID: mdl-31601320

RESUMO

OBJECTIVE: To establish an effective method of primary and passage cultured cerebral cortical astrocyte of SD neonatal rat in vitro. METHODS: Cerebral cortex of two 2-day-old SD rats were taken with aseptic operation and then were cut to pieces. After stripped the pia mater, digested by 500 µL 0. 25% trypsin at 37 ℃ for 15 min. Next, dispersed cell suspension was made by mechanical method and filtered. Cell suspensions were incubated in an uncoated culture bottle at 37 ℃ for 15 min. The cells were inoculated at 5×10~6/m L in the T75 culture flask coated with L-polylysine. The cells were shaken at 200 r/min 37 ℃ for 18 h, then added 1 m L of trypsin to digest cells and then collected the cells. The morphology of the passage cells was observed under inverted phase contrast microscope, and the purity of astrocytes was identified by immunofluorescence staining of GFAP. The proliferate activity of passage cells was determined by MTS assay. RESULTS: The purity of astrocytes was( 97. 86 ± 0. 91) %, and the growth and proliferation activity of astrocytes were good after passage. CONCLUSION: A rapid, economical and effective method for obtaining astrocytes in the cerebral cortex of newborn rats was established.


Assuntos
Astrócitos , Córtex Cerebral , Animais , Animais Recém-Nascidos , Células Cultivadas , Ratos , Ratos Sprague-Dawley
12.
J Pediatr (Rio J) ; 100(4): 413-421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642590

RESUMO

OBJECTIVE: To examine the mental health status and related factors in children and adolescents, and to assess age groups and sexes differences in factors influencing mental health. METHODS: This cross-sectional study was performed on Chinese children aged 6-18 years from November 2021 to January 2022. Mental health difficulties were accessed by the Strengths and Difficulties Questionnaire. Multivariate logistic regression was used to analyze factors associated with mental health status. Multiple linear regression was used to evaluate factors associated with the scores of the Strengths and Difficulties Questionnaire. RESULTS: The prevalence of mental health difficulties was 12.98% (n =1348). Age (OR, 0.909, [95%CI, 0.830-0.996]), sex (OR, 1.424, [95%CI, 1.033-1.963]) and screen time on weekdays ("≥2" h/d vs "< 1" h/d: OR, 2.001, [95%CI, 1.300-3.080]) were related factors for mental health difficulties. For children (year ≤ 12), the strongest related factor for mental health difficulties was screen time on weekdays ("≥ 2" h/d vs "< 1" h/d: OR, 1.821 [95%CI, 1.203-2.755]). The risk of mental health difficulties in females with ≥ 2 h/d screen time on weekends was 3.420 times higher than those with < 1 h/d (OR, 3.420, [95%CI, 1.923-6.081]). CONCLUSION: The prevalence of mental health difficulties among children and adolescents was relatively high. The lower age, female sex and excessive screen time were associated with a higher risk of mental health difficulties. The factors influencing mental health varied by different age groups and sexes. Thus, specific measures for different age groups and sexes should be adopted to mitigate the impact.


Assuntos
COVID-19 , Transtornos Mentais , Saúde Mental , Humanos , Adolescente , Estudos Transversais , Criança , Feminino , Masculino , COVID-19/epidemiologia , COVID-19/psicologia , China/epidemiologia , Transtornos Mentais/epidemiologia , Prevalência , Fatores Sexuais , Fatores Etários , Tempo de Tela , Fatores de Risco , Inquéritos e Questionários , Pandemias , População do Leste Asiático
13.
Exp Gerontol ; : 112520, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992823

RESUMO

Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA, Cn-3, 22:6) are essential in improving cognitive function and protecting neurocytes. This study explored the effects of the combined intervention of MCTs and DHA on inhibiting neurocyte apoptosis of the brain and improving cognitive function in senescence-accelerated mouse-prone 8 (SAMP8). Four-month-old male SAMP8 mice were randomly divided into four treatment groups (12 mice/group): DHA, MCT, DHA + MCT, and control groups, which intervened for seven months. Twelve age-matched male senescence-accelerated mouse resistant 1 (SAMR1) was used as the natural aging group. TUNEL assay and HE staining were used to assess neurocyte apoptosis and damage in the brain of mice. Moreover, the cognitive function was analyzed using the Morris water maze (MWM) and open field (OF) tests. The results showed that the cognitive function of 11-month-old SAMP8 mice decreased with age, and further pathological examination revealed the damaged neurocyte structure, karyopyknosis, cell atrophy, and even apoptosis. MCTs combined with DHA supplementation could increase octanoic acid (C8:0), decanoic acid (C10:0), and DHA levels in the serum, inhibit neurocyte apoptosis, improve neurocyte damage, moreover delay age-related cognitive decline after seven-month treatment. Furthermore, combining MCTs and DHA was significantly more beneficial than MCTs or DHA alone. In conclusion, MCTs combined with DHA could delay cognitive decline by inhibiting neurocyte apoptosis of the brain in SAMP8 mice.

14.
BMJ Open ; 14(4): e082957, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580360

RESUMO

INTRODUCTION: Cardiometabolic disease (CMD) is the leading cause of mortality in China. A healthy diet plays an essential role in the occurrence and development of CMD. Although the Chinese heart-healthy diet is the first diet with cardiovascular benefits, a healthy dietary pattern that fits Chinese food culture that can effectively reduce the risk of CMD has not been found. METHODS/DESIGN: The study is a single-centre, open-label, randomised controlled trial aimed at evaluating the effect of the Reducing Cardiometabolic Diseases Risk (RCMDR) dietary pattern in reducing the risk of CMDs in people with dyslipidaemia and providing a reference basis for constructing a dietary pattern suitable for the prevention of CMDs in the Chinese population. Participants are men and women aged 35-45 years with dyslipidaemia in Tianjin. The target sample size is 100. After the run-in period, the participants will be randomised to the RCMDR dietary pattern intervention group or the general health education control group with a 1:1 ratio. The intervention phases will last 12 weeks, with a dietary intervention of 5 working days per week for participants in the intervention group. The primary outcome variable is the cardiometabolic risk score. The secondary outcome variables are blood lipid, blood pressure, blood glucose, body composition indices, insulin resistance and 10-year risk of cardiovascular diseases. ETHICS AND DISSEMINATION: The study complies with the Measures for Ethical Review of Life Sciences and Medical Research Involving Human Beings and the Declaration of Helsinki. Signed informed consent will be obtained from all participants. The study has been approved by the Medical Ethics Committee of the Second Hospital of Tianjin Medical University (approval number: KY2023020). The results from the study will be disseminated through publications in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry (ChiCTR2300072472).


Assuntos
Doenças Cardiovasculares , Dislipidemias , Masculino , Humanos , Feminino , Padrões Dietéticos , Glicemia , Fatores de Risco , Doenças Cardiovasculares/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Appl Physiol Nutr Metab ; 48(5): 393-402, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809211

RESUMO

Folic acid (FA) could improve cognitive performance and attenuate brain cell injury in the aging brain; FA supplementation is also associated with inhibiting neural stem cell (NSC) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs in mice via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups (n = 15). Fifteen age-matched senescence-accelerated mouse resistant 1 mice, fed with the FA-normal diet, were used as the standard aging control group. After FA treatment for 6 months, all mice were sacrificed. NSC apoptosis, proliferation, oxidative damage, and telomere length were evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSC apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be explained by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms by which FA inhibits age-associated NSC apoptosis by alleviating telomere length shortening.


Assuntos
Ácido Fólico , Células-Tronco Neurais , Camundongos , Masculino , Animais , Ácido Fólico/farmacologia , Hibridização in Situ Fluorescente , Envelhecimento , Apoptose , Telômero
16.
Nutrients ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447170

RESUMO

The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.


Assuntos
Deficiência de Ácido Fólico , Células-Tronco Neurais , Telomerase , Animais , Ratos , Encurtamento do Telômero , Telômero , Ácido Fólico/farmacologia , Apoptose , Proliferação de Células
17.
J Nutr Biochem ; 117: 109328, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958416

RESUMO

The brain has high energy demand making it sensitive to changes in energy fuel supply. Aging shrinks brain volume, decreases glucose uptake availability of the brain, and finally, causes cognitive dysfunction. Folic acid supplementation delayed cognitive decline and neurodegeneration. However, whether folic acid affects brain energy metabolism and structural changes is unclear. The study aimed to determine if long-term dietary folic acid supplementation could alleviate age-related cognitive decline by attenuating hippocampus atrophy and promoting brain glucose uptake in Sprague-Dawley (SD) rats. According to folic acid levels in diet, 3-months old male SD rats were randomly divided into four intervention groups for 22 months in equal numbers: folic acid-deficient diet (FA-D) group, folic acid-normal diet (FA-N) group, low folic acid-supplemented diet (FA-L) group, and high folic acid-supplemented diet (FA-H) group. The results showed that serum folate concentrations decreased and serum homocysteine (Hcy) concentrations increased with age, and dietary folic acid supplementation increased serum folate concentrations and decreased Hcy concentrations at 11, 18, and 22 months of intervention. Dietary folic acid supplementation attenuated aging-induced hippocampus atrophy, which was showed by higher fractional anisotropy and lower mean diffusivity in the hippocampus, increased brain 18F-Fluorodeoxyglucose (18F-FDG) uptake, then stimulated neuronal survival, and alleviated age-related cognitive decline in SD rats. In conclusion, long-term dietary folic acid supplementation alleviated age-related cognitive decline by attenuating hippocampus atrophy and promoting brain glucose uptake in SD rats.


Assuntos
Disfunção Cognitiva , Dieta , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Ácido Fólico/metabolismo , Suplementos Nutricionais , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Envelhecimento , Hipocampo/metabolismo , Glucose/metabolismo
18.
J Nutr Biochem ; 122: 109455, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788724

RESUMO

Maternal folate status during pregnancy is associated with the neurodevelopment of offspring; however, study results on the association between paternal folate status and offspring neurodevelopment are inconsistent. This study aimed to explore whether parental folic acid deficiency affects the neurobehavioral development of offspring by affecting the differentiation of neural stem cells (NSCs) into neurons. In the present study, the offspring were divided into four groups: parental folic acid deficient group (D-D), maternal folic acid deficient and paternal folic acid normal group (D-N), maternal folic acid normal and paternal folic acid deficient group (N-D), and parental folic acid normal group (N-N). For in vivo study, neurobehavioral indexes, and neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) expression in the brain hippocampus and cerebral cortex of offspring were measured at different time points. For in vitro study, NSCs were cultured from the hippocampus and striatum, and neuronal and astrocytic differentiation were measured. The results demonstrated that parental folic acid deficiency decreased the brain folate level in offspring, delayed early sensory-motor reflex development, impaired spatial learning and memory ability in adolescence and adulthood, decreased differentiation of NSCs into neurons and increased differentiation of NSCs into astrocytes in vivo and in vitro. These impacts on the neurodevelopment of offspring were most pronounced in D-D group, followed by D-N group and N-D group. In conclusion, parental folic acid deficiency inhibits the neurobehavioral development of offspring, possibly by inhibiting the differentiation of NSCs into neurons.


Assuntos
Deficiência de Ácido Fólico , Células-Tronco Neurais , Gravidez , Feminino , Ratos , Animais , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Diferenciação Celular
19.
Nutrients ; 15(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836528

RESUMO

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and ß-hydroxybutyrate (ß-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aß), amyloid precursor protein (APP), ß-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Camundongos Transgênicos , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Suplementos Nutricionais , Triglicerídeos/metabolismo
20.
JAMA Netw Open ; 6(7): e2324031, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37462970

RESUMO

Importance: Apolipoprotein E polymorphism ε4 (APOE ε4) and methylenetetrahydrofolate reductase (MTHFR) TT genotype are genetic risk factors of mild cognitive impairment (MCI), but whether this risk can be changed by modifiable lifestyle factors is unknown. Objective: To explore whether unhealthy lifestyle (unhealthy dietary intake, current smoking, nonlimited alcohol consumption, and irregular physical activities) is associated with a higher risk of age-related MCI considering genetic risk. Design, Setting, and Participants: This population-based cohort study used data from Tianjin Elderly Nutrition and Cognition (TENC) study participants, recruited from March 1, 2018, through June 30, 2021, and followed up until November 30, 2022. Participants were Chinese adults aged 60 years or older who completed the neuropsychological assessments, general physical examinations, and a personal interview. Exposures: Healthy lifestyle was defined according to the Chinese Dietary Guidelines 2022, including healthy diet, regular physical activity, limited alcohol consumption, and no current smoking, categorized into healthy and unhealthy lifestyles according to weighted standardized lifestyle score. Genetic risk was defined by MTHFR TT genotype and APOE ε4, categorized into low and high genetic risk according to weighted standardized genetic risk score. Main Outcomes and Measures: The main outcome was newly diagnosed MCI as identified using a modified version of Petersen criteria. Hazard ratios (HRs) and 95% CIs were estimated using Cox proportional hazard regression models. Results: A total of 4665 participants were included (mean [SD] age, 67.9 [4.9] years; 2546 female [54.6%] and 2119 male [45.4%]); 653 participants with new-onset MCI (mean [SD] age, 68.4 [5.4] years; 267 female [40.9%] and 386 male [59.1%]) were identified after a median follow-up of 3.11 years (range, 0.82-4.61 years). Individuals with a low genetic risk and an unhealthy lifestyle (HR, 3.01; 95% CI, 2.38-3.79), a high genetic risk and a healthy lifestyle (HR, 2.65; 95% CI, 2.03-3.44), and a high genetic risk and an unhealthy lifestyle (HR, 3.58; 95% CI, 2.73-4.69) had a higher risk of MCI compared with participants with a low genetic risk and a healthy lifestyle. There was a synergistic interaction between lifestyle categories and genetic risk (ß = 3.58; 95% CI, 2.73-4.69). Conclusions and Relevance: In this cohort study of TENC participants, the findings show that unhealthy lifestyle and high genetic risk were significantly associated with a higher risk of MCI among Chinese older adults. Unhealthy lifestyle factors were associated with a higher risk of MCI regardless of genetic risk, and lifestyle and genetic risk had synergistic interactions. These findings could contribute to the development of dietary guidelines and the prevention of early-stage dementia.


Assuntos
Apolipoproteína E4 , Disfunção Cognitiva , Metilenotetra-Hidrofolato Redutase (NADPH2) , Idoso , Feminino , Humanos , Masculino , Apolipoproteína E4/genética , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Estudos de Coortes , População do Leste Asiático , Estilo de Vida , Fatores de Risco , Pessoa de Meia-Idade , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA