Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biochemistry ; 63(3): 312-325, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271599

RESUMO

We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications.


Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , Animais , Conformação de Ácido Nucleico , Nanoestruturas/química , Nanotecnologia , DNA/química , Nanopartículas/química , Mamíferos
2.
Langmuir ; 40(9): 4914-4926, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385347

RESUMO

Electrochemical scanning tunneling microscopy (EC-STM) and electrochemical quartz crystal microbalance (E-QCM) techniques in combination with DFT calculations have been applied to reveal the static phase and the phase transition of copper underpotential deposition (UPD) on a gold electrode surface. EC-STM demonstrated, for the first time, the direct visualization of the disintegration of (√3 × âˆš3)R30° copper UPD adlayer with coadsorbed SO42- while changing sample potential (ES) toward the redox Pa2/Pc2 peaks, which are associated with the phase transition between the Cu UPD (√3 × âˆš3)R30° phase II and disordered randomly adsorbed phase III. DFT calculations show that SO42- binds via three oxygens to the bridge sites of the copper with sulfate being located directly above the copper vacancy in the (√3 × âˆš3)R30° adlayer, whereas the remaining oxygen of the sulfate points away from the surface. E-QCM measurement of the change of the electric charge due to Cu UPD Faradaic processes, the change of the interfacial mass due to the adsorption and desorption of Cu(II) and SO42-, and the formation and stripping of UPD copper on the gold surface provide complementary information that validates the EC-STM and DFT results. This work demonstrated the advantage of using complementary in situ experimental techniques (E-QCM and EC-STM) combined with simulations to obtain an accurate and complete picture of the dynamic interfacial adsorption and UPD processes at the electrode/electrolyte interface.

3.
Nature ; 541(7635): 112-116, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992877

RESUMO

Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded ß-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Genoma Viral/fisiologia , Levivirus/metabolismo , Levivirus/ultraestrutura , RNA Viral/ultraestrutura , Montagem de Vírus , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Levivirus/química , Levivirus/genética , Modelos Moleculares , Conformação Molecular , Multimerização Proteica , RNA Viral/química , RNA Viral/metabolismo
4.
J Clin Lab Anal ; 36(7): e24406, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588431

RESUMO

BACKGROUND: LINC00941 has been proved to be related to various tumors, but its relationship with laryngocarcinoma remains vague. METHODS: LINC00941 expression in laryngocarcinoma tumor and laryngocarcinoma cells was determined by real time-quantitative polymerase chain reaction (RT-qPCR). Besides, the five-year survival of laryngocarcinoma patients with different LINC00941 expression was analyzed with Kaplan-Meier survival analysis, and the clinical characteristics of laryngocarcinoma patients were also recorded. After transfection, cell viability, cell proliferation, apoptosis, cell cycle, migration, and invasion were detected by cell counting kit-8 (CCK-8), colony formation, flow cytometry, cell scratch, and Transwell assays, respectively. Glycolysis was assessed by the colorimetric method. Expressions of proliferation-associated proteins, migration-associated proteins, glycolysis-associated proteins, and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathway-associated proteins were detected by Western blot. RESULTS: In laryngocarcinoma tumor tissues and cells, LINC00941 was highly expressed. High expression of LINC00941 decreased the 5-year survival of laryngocarcinoma patients, and it was positively related to lymph node metastasis and clinical stages. LINC00941 overexpression decreased apoptosis but promoted cell viability, proliferation, cell-cycle progression, migration, and invasion, and glucose consumption and lactate production in laryngocarcinoma cells. Moreover, LINC00941 overexpression elevated expressions of Ki-67, PCNA, MMP2, N-Cadherin, HK2, PFKFB4, and PKM, activated the PI3K/AKT/mTOR signal pathway but reduced E-Cadherin expression, while LINC00941 silencing had the opposite effects. PKM overexpression reversed the effects of LINC00941 silencing on cellular and glycolytic phenotypes. CONCLUSION: LINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma cells by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Apoptose/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicólise/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Phys Chem Chem Phys ; 23(15): 9539-9552, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885060

RESUMO

In this paper, we demonstrate a combined theoretical and experimental study on the electronic structure, and the optical and electrochemical properties of ß-Ag2MoO4 and Ag2O. These crystals were synthesized using the hydrothermal method and were characterized using X-ray diffraction (XRD), Rietveld refinement, and TEM techniques. XRD and Rietveld results confirmed that ß-Ag2MoO4 has a spinel-type cubic structure. The optical properties were investigated by UV-Vis spectroscopy. DFT+U formalism, via on-site Coulomb corrections for the d orbital electrons of Ag and Mo atoms (Ud) and the 2p orbital electrons of O atoms (Up) provided an improved band gap for ß-Ag2MoO4. Examination of the density of states revealed the energy states in the valence and conduction bands of the ß-Ag2MoO4 and Ag2O. The theoretical band structure indicated an indirect band gap of approximately 3.41 eV. Furthermore, CO2 electroreduction, and hydrogen and oxygen evolution reactions on the surface of ß-Ag2MoO4 and Ag2O were studied and a comparative investigation on molybdate-derived silver and oxide-derived silver was performed. The electrochemical results demonstrate that ß-Ag2MoO4 and Ag2O can be good electrocatalysts for water splitting and CO2 reduction. The CO2 electroreduction results also indicate that CO2 reduction intermediates adsorbed strongly on the surface of Ag2O, which increased the overpotential for the hydrogen evolution reaction on the surface of Ag2O by as much as 0.68 V against the value of 0.6 V for Ag2MoO4, at a current density of -1.0 mA cm-2.

6.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925655

RESUMO

Human infection with highly pathogenic avian influenza A viruses causes severe disease and fatalities. We previously identified a potent and broadly neutralizing antibody (bnAb), 13D4, against the H5N1 virus. Here, we report the co-crystal structure of 13D4 in complex with the hemagglutinin (HA) of A/Vietnam/1194/2004 (H5N1). We show that heavy-chain complementarity-determining region 3 (HCDR3) of 13D4 confers broad yet specific neutralization against H5N1, undergoing conformational rearrangement to bind to the receptor binding site (RBS). Further, we show that mutating four critical residues within the RBS-Trp153, Lys156, Lys193, and Leu194-disrupts the binding between 13D4 and HA. Viruses bearing Asn193 instead of Lys/Arg can evade 13D4 neutralization, indicating that Lys193 polymorphism might be, at least in part, involved in the antigenicity of recent H5 genotypes (such as H5N6 and H5N8) as distinguished from H5N1. BnAb 13D4 may offers a template for therapeutic RBS inhibitor design and serve as an indicator of antigenic change for current H5 viruses.IMPORTANCE Infection by highly pathogenic avian influenza A virus remains a threat to public health. Our broadly neutralizing antibody, 13D4, is capable of neutralizing all representative H5N1 viruses and protecting mice against lethal challenge. Structural analysis revealed that 13D4 uses heavy-chain complementarity-determining region 3 (HCDR3) to fit the receptor binding site (RBS) via conformational rearrangement. Four conserved residues within the RBS are critical for the broad potency of 13D4. Importantly, polymorphism of Lys193 on the RBS may be associated with the antigenicity shift from H5N1 to other newly emerging viruses, such as H5N6 and H5N8. Our findings may pave the way for highly pathogenic avian influenza virus vaccine development and therapeutic RBS inhibitor design.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Análise Mutacional de DNA , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Evasão da Resposta Imune , Camundongos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Ligação Proteica , Conformação Proteica
7.
Langmuir ; 35(41): 13259-13267, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580684

RESUMO

Self-assembly provides unique routes to create supramolecular nanostructures at well-defined surfaces. In the present work, we employed scanning tunneling microscopy (STM) in combination with electrochemical techniques to explore the adsorption and phase formation of a series of aromatic carboxylic acids (ACAs) at Au(111)/0.1 M HClO4. Specific goals are to elucidate the roles of electrochemical potential and directional hydrogen-bonding on the structures and orientation of individual ACAs that form nanoarchitectures. ACAs are prototype materials for supramolecular self-assemblies via stereospecific hydrogen bonds between neighboring molecules. In this study, we mainly focus on a special ACA, terephthalic acid (TPA), which is almost insoluble in water, making the assembly of this molecule from aqueous solution challenging. Depending on the applied electric field, TPA molecules form distinctly different, highly ordered adlayers on Au(111) triggered by directional intermolecular hydrogen bonds. At low electrochemical potentials, TPA molecules are planar oriented, forming a potentially infinite hydrogen-bonded adlayer without any observed domain boundaries. The increase of the electrode potential triggers the deprotonation of one carboxylic acid functional group of TPA; additionally, this is accompanied by an orientation change of molecules from planar to perpendicular. In contrast, structural "defects" and multiple domain boundaries were found at this positively charged surface. The assembled nanostructures of TPA are compared with other ACAs (trimesic acid, benzoic acid, and isophthalic acid), and corresponding adsorption models were built for all molecular adlayers, showing that intermolecular hydrogen-bonding plays a determining role in the formation of two-dimensional ACA nanostructures.

8.
Proc Natl Acad Sci U S A ; 113(24): 6653-8, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247389

RESUMO

In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-ß) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-ß enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes.


Assuntos
Proteínas de Bactérias/metabolismo , Glutamato-Amônia Ligase/metabolismo , Lisina/metabolismo , Nitrogênio/metabolismo , Saccharopolyspora/metabolismo , Sirtuínas/metabolismo , Acetilação , Proteínas de Bactérias/genética , Glutamato-Amônia Ligase/genética , Lisina/genética , Saccharopolyspora/genética , Sirtuínas/genética
9.
Langmuir ; 34(50): 15517-15525, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30472860

RESUMO

Controlling the size of nanoscale entities is important because many properties of nanomaterials are directly related to the size of the particles. Gold nanoparticles represent classic materials and are of particular interest due to their potential application in a variety of fields. In this study, hexanethiol-capped gold nanoparticles are synthesized via the Brust-Schiffrin method. Synthesized nanoparticles were characterized by various analytical techniques such as transmission electron microscopy, scanning tunneling microscopy (STM), UV-visible absorption spectroscopy and electrochemical techniques. We have varied the molar ratio of gold to the protecting agent (hexanethiol) to discover the effect of gold-to-hexanethiol ligand ratio on the size of gold particles. The clear correlation between particle size and molar ratio is found that the averaged particle size decreases from 4.28 ± 0.83 to 1.54 ± 0.67 nm as the gold-to-ligand molar ratio changes from 1:1 to 1:9. In contrast to a recent report that thiolated gold nanoparticles are under spontaneous disintegration when they are assembled on a gold substrate, our STM experiments proved that these gold nanoparticles can form a stable monolayer or multiple layers on the platinum electrode without observing disintegration within 72 h. Therefore, our STM experiments demonstrate that the disintegration behavior of gold nanoparticles is related to the type of ligands and the nature of substrate materials. In electrochemical experiments, these gold nanoparticles displayed an electrochemical quantized charging effect, making these nanoparticles useful in the device applications such as electrochemical or biological sensors.

10.
Protein Expr Purif ; 133: 110-120, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267627

RESUMO

Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.


Assuntos
Proteínas do Capsídeo , Códon de Terminação , Expressão Gênica , Papillomavirus Humano 31/genética , Mutagênese , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Papillomavirus Humano 31/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/biossíntese , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Rev Med Virol ; 26(2): 115-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676802

RESUMO

Persistent high-risk human papillomavirus (HPV) infection is linked to cervical cancer. Two prophylactic virus-like particle (VLP)-based vaccines have been marketed globally for nearly a decade. Here, we review the HPV pseudovirion (PsV)-based assays for the functional assessment of the HPV neutralizing antibodies and the structural basis for these clinically relevant epitopes. The PsV-based neutralization assay was developed to evaluate the efficacy of neutralization antibodies in sera elicited by vaccination or natural infection or to assess the functional characteristics of monoclonal antibodies. Different antibody binding modes were observed when an antibody was complexed with virions, PsVs or VLPs. The neutralizing epitopes are localized on surface loops of the L1 capsid protein, at various locations on the capsomere. Different neutralization antibodies exert their neutralizing function via different mechanisms. Some antibodies neutralize the virions by inducing conformational changes in the viral capsid, which can result in concealing the binding site for a cellular receptor like 1A1D-2 against dengue virus, or inducing premature genome release like E18 against enterovirus 71. Higher-resolution details on the epitope composition of HPV neutralizing antibodies would shed light on the structural basis of the highly efficacious vaccines and aid the design of next generation vaccines. In-depth understanding of epitope composition would ensure the development of function-indicating assays for the comparability exercise to support process improvement or process scale up. Elucidation of the structural elements of the type-specific epitopes would enable rational design of cross-type neutralization via epitope re-engineering or epitope grafting in hybrid VLPs.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Proteínas do Capsídeo/imunologia , Papillomaviridae/imunologia , Epitopos/imunologia , Feminino , Humanos , Ligação Proteica/imunologia , Neoplasias do Colo do Útero/virologia
12.
Nanomedicine ; 13(3): 1137-1146, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28064006

RESUMO

RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community.


Assuntos
DNA/química , Nanopartículas/química , Nanotecnologia/métodos , RNA/química , Uracila/química , Sequência de Bases , Linhagem Celular , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem
13.
Chemphyschem ; 17(21): 3385-3389, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27870252

RESUMO

Utilizing pure amine hydrogen bonding is a novel approach for constructing two-dimensional (2D) networks. Further, such systems are capable of undergoing structural modifications due to changes in pH. In this study, we designed a 2D network of triaminobenzene (TAB) molecules that by varying the pH from neutral to acidic, form either ordered or disordered structures on Au(111) surface as revealed in scanning tunneling microscopy images. In near-neutral solution (pH ≈5.5), protonation of TAB generates charged species capable of forming H-bonds between amine groups of neighboring molecules resulting in the formation of a 2D supramolecular structure on the electrified surface. At lower pH, due to the protonation of the amine groups, intermolecular hydrogen bonding is no longer possible and no ordered structure is observed on the surface. This opens the possibility to employ pH as a chemical trigger to induce a phase transition in the 2D molecular network of triaminobenzene molecules.

14.
Appl Microbiol Biotechnol ; 99(3): 1399-413, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487885

RESUMO

Lysine acetylation is a dynamic, reversible posttranslational modification that is known to play an important role in regulating the activity of many key enzymes in bacteria. Acetylproteome studies have been performed on some bacteria. However, until now, there have been no data on Actinomycetes, which are the major producers of therapeutic antibiotics. In this study, we investigated the first acetylproteome of the erythromycin-producing actinomycete Saccharopolyspora erythraea using a high-resolution mass spectrometry-based proteomics approach. Using immune-affinity isolation of acetyl-peptides with an anti-acetyllysine antibody followed by nano ultra performance liquid chromatography tandem mass spectroscopy (nanoUPLC-MS/MS) analysis, we identified 664 unique lysine-acetylated sites on 363 proteins. Acetylated proteins are involved in many biological processes such as protein synthesis, glycolysis/gluconeogenesis, citric acid (TCA) cycle, fatty acid metabolism, secondary metabolism, and the feeder metabolic pathways of erythromycin synthesis. We characterized the acetylproteome and analyzed in detail the impact of acetylation on diverse cellular functions according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four motif sequences surrounding the acetylation sites (K(AC)H, K(AC)Y, K(AC)XXXXR, and K(AC)XXXXK) were found in the S. erythraea acetylproteome. These findings suggest that abundant lysine acetylation occurs in Actinomycetes, expand our current knowledge of the bacterial acetylproteome, and provide insight into the regulatory function of acetylation in primary and secondary metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Saccharopolyspora/metabolismo , Acetilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Lisina/química , Proteômica , Saccharopolyspora/química , Saccharopolyspora/genética , Metabolismo Secundário , Espectrometria de Massas em Tandem
15.
Nano Lett ; 14(10): 5493-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25255444

RESUMO

Single molecule break junction experiments and nonequilibrium Green's function calculations using density functional theory (NEGF-DFT) of carbodithioate- and thiol-terminated [5,15-bis(phenylethynyl)-10,20-diarylporphinato]zinc(II) complexes reveal the impact of the electrode-linker coordination mode on charge transport at the single-molecule level. Replacement of thiolate (-S(-)) by the carbodithioate (-CS2(-)) anchoring motif leads to an order of magnitude increase of single molecule conductance. In contrast to thiolate-terminated structures, metal-molecule-metal junctions that exploit the carbodithioate linker manifest three distinct conductance values. We hypothesize that the magnitudes of these conductances depend upon carbodithoate linker hapticity with measured conductances across Au-[5,15-bis(4'-(dithiocarboxylate)phenylethynyl)-10,20-diarylporphinato]zinc(II)-Au junctions the greatest when both anchoring groups attach to the metal surface in a bidentate fashion. We support this hypothesis with NEGF-DFT calculations, which consider the electron transport properties for specific binding geometries. These results provide new insights into the origin of molecule-to-molecule conductance heterogeneity in molecular charge transport measurements and the factors that optimize electrode-molecule-electrode electronic coupling and maximize the conductance for charge transport.


Assuntos
Complexos de Coordenação/química , Condutividade Elétrica , Metaloporfirinas/química , Tiocarbamatos/química , Zinco/química , Eletrodos , Eletrônica/instrumentação , Desenho de Equipamento , Modelos Moleculares
16.
J Am Chem Soc ; 136(25): 8867-70, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24933522

RESUMO

We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal-molecule-metal (m-M-m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (-CS2(-)) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.

17.
Angew Chem Int Ed Engl ; 53(37): 9771-4, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25044431

RESUMO

The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM-BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat-oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 G(o) , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long-range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation-controlled molecular junctions.

18.
Angew Chem Int Ed Engl ; 53(4): 1098-102, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24339362

RESUMO

Sensors play a significant role in the detection of toxic species and explosives, and in the remote control of chemical processes. In this work, we report a single-molecule-based pH switch/sensor that exploits the sensitivity of dye molecules to environmental pH to build metal-molecule-metal (m-M-m) devices using the scanning tunneling microscopy (STM) break junction technique. Dyes undergo pH-induced electronic modulation due to reversible structural transformation between a conjugated and a nonconjugated form, resulting in a change in the HOMO-LUMO gap. The dye-mediated m-M-m devices react to environmental pH with a high on/off ratio (≈100:1) of device conductivity. Density functional theory (DFT) calculations, carried out under the non-equilibrium Green's function (NEGF) framework, model charge transport through these molecules in the two possible forms and confirm that the HOMO-LUMO gap of dyes is nearly twice as large in the nonconjugated form as in the conjugated form.

19.
J Multidiscip Healthc ; 17: 609-617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348208

RESUMO

Purpose: This study aimed to establish a stereoscopic neural learning network through deep learning and construct an artificial intelligence (AI) diagnosis system for the prediction of benign and malignant thyroid diseases, as well as repeatedly verified the diagnosis system and adjusted the data, in order to develop a type of AI-assisted thyroid diagnosis software with a low false negative rate and high sensitivity for clinical practice. Patients and Methods: From July 2020 to April 2023, A total of 36 patients with thyroid nodules in our hospital were selected for diagnosis of thyroid nodules based on the Expert Consensus on Thyroid Ultrasound; samples were taken by aspiration biopsy or surgically and sent for pathological diagnosis. The ultrasonic diagnosis results were compared with the pathological results, a database was established based on the ultrasonic diagnostic characteristics and was entered in the AI-assisted diagnosis software for judgment of benign and malignant conditions. The data in the software were corrected based on the conformity rate and the reasons for misjudgment, and the corrected software was used to evaluate the benign and malignant conditions of the 36 patients, until the conformity rate exceeded 90%. Results: The initial conformity rate of the AI software for identifying benign and malignant conditions was 88%, while that of the software utilizing the database was 94%. Conclusion: We established a stereoscopic neural learning network and construct an AI diagnosis system for the prediction of benign and malignant thyroid diseases, with a low false negative rate and high sensitivity for clinical practice.

20.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670961

RESUMO

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Assuntos
Multimerização Proteica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitinação , Modelos Moleculares , Cristalografia por Raios X , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA