Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Zhonghua Nan Ke Xue ; 30(6): 507-513, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39212359

RESUMO

OBJECTIVE: To investigate the risk factors affecting the prognosis of penile cancer after surgery. METHODS: We retrospectively analyzed the clinical data on 112 cases of penile cancer treated in Weifang People's Hospital from January 2013 to December 2023. Using the Kaplan-Meier survival curve, χ2 test, Fisher's exact test, and univariate and multivariate Cox risk regression analyses, we compared the clinical characteristics among different groups, and determined the independent prognostic risk factors for cancer-specific survival (CSS) of the patients. RESULTS: The 1-, 3- and 5-year CSS rates of the penile cancer patients were 78.2%, 66.1% and 63.7%, respectively. Kaplan-Meier analysis indicated a significant correlation of a higher neutrophil-to-lymphocyte ratio (NLR) with a lower CSS rate (P < 0.001). Multivariate Cox regression analysis showed high NLR (HR = 2.6; 95% CI: 1.031-6.558; P = 0.043) to be an independent risk factor for CSS. CONCLUSION: Preoperative NLR is an independent risk factor for the prognosis of penile cancer. In addition, older age, farmer or worker occupation, lower education, preoperative lymphocyte-to-monocyte ratio (LMR)≤2.81, preoperative fibrinogen (FIB)≥3.41 g/L, advanced tumor stage and tumor differentiation are associated with the poor prognosis the malignancy.


Assuntos
Neutrófilos , Neoplasias Penianas , Humanos , Masculino , Neoplasias Penianas/cirurgia , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Linfócitos , Período Pós-Operatório , Taxa de Sobrevida , Estimativa de Kaplan-Meier , Modelos de Riscos Proporcionais , Pessoa de Meia-Idade
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 997-1004, 2023 Dec 30.
Artigo em Zh | MEDLINE | ID: mdl-38173113

RESUMO

Melatonin,an endocrine hormone synthesized by the pineal gland,plays an important role in the reproduction.The growth and development of follicles is the basis of female mammalian fertility.Follicles have a high concentration of melatonin.Melatonin receptors exist on ovarian granulosa cells,follicle cells,and oocytes.It regulates the growth and development of these cells and the maturation and atresia of follicles,affecting female fertility.This paper reviews the protective effects and regulatory mechanisms of melatonin on the development of ovarian follicles,granulosa cells,and oocytes and makes an outlook on the therapeutic potential of melatonin for ovarian injury,underpinning the clinical application of melatonin in the future.


Assuntos
Melatonina , Animais , Feminino , Melatonina/farmacologia , Folículo Ovariano , Oócitos , Células da Granulosa/fisiologia , Mamíferos
3.
J Transl Med ; 19(1): 372, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461927

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) and lanthionine synthetase C-like 2 (LanCL2) genes locate in the same amplicon, and co-amplification of EGFR and LANCL2 is frequent in glioblastoma. However, the prognostic value of LANCL2 and EGFR co-amplification, and their mRNA and protein expression in glioblastoma remain unclear yet. METHODS: This study analyzed the prognostic values of the copy number variations (CNVs), mRNA and protein expression of LANCL2 and EGFR in 575 glioblastoma patients in TCGA database and 100 glioblastoma patients in tumor banks of the Shenzhen Second People's Hospital and the Sun Yat-sen University Cancer Center. RESULTS: The amplification of LANCL2 or EGFR, and their co-amplification were frequent in glioblastoma of TCGA database and our tumor banks. A significant correlation was found between the CNVs of LANCL2 and EGFR (p < 0.001). CNVs of LANCL2 or EGFR were significantly correlated with IDH1/2 mutation but not MGMT promoter methylation. Multivariate analysis showed that LANCL2 amplification was significantly correlated with reduced overall survival (OS) in younger (< 60 years) glioblastoma patients of TCGA database (p = 0.043, HR = 1.657) and our tumor banks (p = 0.018, HR = 2.199). However, LANCL2 or EGFR amplification, and their co-amplification had no significant impact on OS in older (≥ 60 years) or IDH1/2-wild-type glioblastoma patients. mRNA and protein overexpression of LANCL2 and EGFR was also frequently found in glioblastoma. The mRNA expression rather than the protein expression of LANCL2 and EGFR was positively correlated (p < 0.001). However, mRNA or protein expression of EGFR and LANCL2 was not significantly correlated with OS of glioblastoma patients. The protein expression level of LANCL2, rather than EGFR, was elevated in relapsing glioblastoma, compared with newly diagnosed glioblastoma. In addition, the intracellular localization of LanCL2, not EGFR, was associated with the grade of gliomas. CONCLUSIONS: Taken together, amplification and mRNA overexpression of LANCL2 and EGFR, and their co-amplification and co-expression were frequent in glioblastoma patients. Our findings suggest that amplification of LANCL2 and EGFR were the independent diagnostic biomarkers for glioblastoma patients, and LANCL2 amplification was a significant prognostic factor for OS in younger glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Receptores ErbB/genética , Glioblastoma , Proteínas de Membrana/genética , Proteínas de Ligação a Fosfato/genética , Idoso , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Humanos , Mutação , Recidiva Local de Neoplasia , Prognóstico , RNA Mensageiro/genética
4.
Phytother Res ; 35(6): 3390-3405, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33856743

RESUMO

Glioblastoma multiforme (GBM) is the most frequent, lethal, and aggressive tumor of the central nervous system in adults. In this study, we found for the first time that moschamindole (MCD), a rare phenolic amide with 8/6/6/5/5 rings, is a major bioactive constituent derived from Phragmites communis Trin (Poaceae) that exhibits a potential cytotoxic effect on both TMZ-resistant GBM cell lines and xenograft models. MCD-induced intrinsic apoptosis signals and mitochondrial dysfunction were confirmed by cell cycle arrest, caspase-3/7 activation, and membrane potential depolarization. Furthermore, investigations exploring the mechanism showed that MCD specifically inhibits Mia40-mediated oxidative folding of mitochondrial intermembrane space (IMS) proteins via PCR assay and immunoblot analysis. MCD relies on its positive charge to associate with mitochondrial oxidative respiration, thus blocking energy metabolism and inducing apoptosis. Overexpression and upregulation of Mia40 were proven to reverse MCD-induced apoptosis and were correlated with the chemoresistance of GBM in vitro and in vivo, respectively. Taken together, our study demonstrates that Mia40 is a potential target of the chemoresistance of glioblastoma and suggests that MCD might be a potential agent for the individualized treatment of chemoresistant GBM based on mitochondrial metabolic characteristics and Mia40 expression.


Assuntos
Apoptose/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Mitocôndrias/metabolismo , Animais , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Phytother Res ; 33(6): 1736-1747, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31006910

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Furanos/farmacologia , Glioblastoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Temozolomida/uso terapêutico , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Furanos/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Temozolomida/administração & dosagem , Transcrição Gênica/efeitos dos fármacos
8.
Phytother Res ; 31(5): 729-739, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240396

RESUMO

Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system (CNS) in adults. Multidrug resistance (MDR) results in undesirable prognosis during GBM chemotherapy. In this study, we determined that Radicol (RAD), a novel trinorguaiane-type sesquiterpene originally isolated from the root of Dictamnus radicis Cortex, exhibited potently cytotoxic effect on temozolomide (TMZ)-resistant GBM cell lines in a dose-dependent manner. Radicol-induced apoptosis was confirmed with Hoechst 33342/propidium iodide and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labelling (TUNEL) staining. Studies investigating the mechanism revealed that RAD triggered an attenuation of protein disulphide isomerase (PDI) and induced the unmitigated unfolded protein response (UPR) and lethal endoplasmic reticulum (ER) stress. Simultaneously, we further demonstrated that RAD suppressed the activation of Akt/mTOR/p70S6K phosphorylation by up-regulating the induction of glycogen synthase kinase-3ß (GSK-3ß). These results established a link between RAD-induced ER stress and inhibition of the Akt/mTOR/p70S6K pathway, and the attenuation of PDI and activation of GSK-3ß might be the synergistic target of antineoplastic effects during RAD-induced apoptosis. These findings suggested that RAD, possessing multiple cytotoxicity targets, low molecular weight and high lipid solubility, could be a promising agent for the treatment of malignant gliomas. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Glioma/patologia , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Dictamnus/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Fosforilação/efeitos dos fármacos , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sesquiterpenos/química , Sesquiterpenos/classificação , Serina-Treonina Quinases TOR , Temozolomida
9.
J Asian Nat Prod Res ; 19(5): 423-435, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27588605

RESUMO

Plant-derived natural products have been the highly significant sources of novel antitumor agents. The cassane-type diterpenes of genus Caesalpinia have been reported to bear antiproliferative activities toward different types of cancer cells. In this study, we evaluated the antineoplasmic activities of 16 natural origin cassane-type diterpenes isolated from the CHCl3 extract of the seeds of C. minax in pituitary adenomas cells and identified caesalpin G (CAG) showed the strongest cytotoxicity. Moreover, we further investigated the structure-activity relationship and molecular mechanism of these derivatives systematically. The results confirmed the unsaturated lactone-type ring, hydroxyl at C-7, and alkenyl at C-11 or C-14 functionality as critical for anticancer activity in this family of natural products. In addition, the mechanism experiments also demonstrated unfolded protein response and ER stress and Wnt/ß-catenin pathway were involved in the CAG-induced apoptosis.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Caesalpinia/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Estrutura Molecular , Neoplasias Hipofisárias/tratamento farmacológico , Sementes/química , Relação Estrutura-Atividade , Proteínas Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos
10.
Cell Mol Neurobiol ; 36(1): 113-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26084601

RESUMO

MicroRNAs can function as oncogenes or tumor suppressors in glioma. Previously, we showed that miR-107 inhibits glioma cell proliferation, migration, and invasion. Since tumor growth and invasion are closely related to angiogenesis, we further examined the role of miR-107 in glioma angiogenesis. In a co-culture of glioma cells and human brain microvascular endothelial cells (HBMVEC), overexpression of miR-107 in glioma cells led to the inhibition of HBMVEC proliferation, migration, and tube formation ability. ELISA, RT-PCR, and western blot assays revealed that upregulation of miR-107 in glioma cells inhibits VEGF expression. Our findings collectively support the critical involvement of miR-107 in glioma cell angiogenesis and highlight its potential as a therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioma/irrigação sanguínea , Glioma/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Células HEK293 , Humanos , Camundongos Nus , MicroRNAs/metabolismo , Microvasos/patologia
11.
Neurochem Res ; 41(12): 3192-3205, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27632183

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive tumour in the central nervous system. Many studies have demonstrated that upregulation of the NF-κB onco-pathway is accompanied by the acquisition of Temozolomide (TMZ) resistance in GBM cells. Here, we show that RGFP109, a selective histone deacetylase (HDAC1 and HDAC3) inhibitor, overcomes TMZ resistance and downregulates the expression of NF-κB-regulated pro-survival genes in a TMZ-resistant (TR) GBM cell line. RGFP109 did not alter the phosphorylation levels of NF-κB/p65 or inhibitory κBα (IκBα). Immunofluorescence microscopy showed that RGFP109 does not block the nuclear translocation of NF-κB/p65. However, co-immunoprecipitation assays revealed that RGFP109 induces the hyperacetylation of NF-κB/p65 and histones, and blocks interactions between NF-κB/p65 and its coactivators, p300 and p300/CBP-associated factor (PCAF). These results indicate that RGFP109-mediated post-translational nuclear acetylation may be involved in the regulation of NF-κB. Electrophoretic mobility shift assays revealed that RGFP109 reduces NF-κB/p65 binding to κB-DNA and decreased the transcriptional level of κB-mediated genes, suggesting that RGFP109-induced hyperacetylation leads to attenuated transcription of the κB gene. In addition, RGFP109 elevates the expression of inhibitor of growth 4 (ING4), which is typically downregulated in GBM cells. Importantly, we found that RGFP109 enhances ING4 recognition and binding to NF-κB/p65, which may be positively correlated with reduced interactions between NF-κB/p65 and p300/PCAF, thereby effecting transcription of the κB gene. Finally, we show that knockdown of ING4 with plasmids containing pcDNA3.1-ING4 shRNA abolished the effect of RGFP109. Therefore, ING4 may act as a corepressor and facilitate RGFP109-triggered suppression of the NF-κB pathway. Taken together, our data show that RGFP109, an HDAC inhibitor, in combination with TMZ may be a therapeutic candidate for patients with temozolomide-resistant GBM.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Benzamidas/farmacologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , NF-kappa B/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias do Sistema Nervoso Central , Dacarbazina/farmacologia , Sinergismo Farmacológico , Glioblastoma , Proteínas de Homeodomínio/metabolismo , Humanos , NF-kappa B/genética , Transdução de Sinais , Temozolomida , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo
12.
Biomed Environ Sci ; 28(10): 728-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26582095

RESUMO

OBJECTIVE: In vivo Proton Magnetic Resonance Spectroscopy (1H-MRS) can be used to evaluate the levels of specific neurochemical biomarkers of pathological mechanisms in the brain. METHODS: We conducted T2-Weighted Magnetic Resonance Imaging (MRI) and 1H-MRS with a 3.0-Tesla animal MRI system to investigate the early microstructural and metabolic profiles in vivo in the striatum of rats following carbon monoxide (CO) poisoning. RESULTS: Compared to baseline, we found significant cortical surface deformation, cerebral edema changes, which were indicated by the unclear gray/white matter border, and lateral ventricular volume changes in the brain. A significant reduction in the metabolite to total creatine (Cr) ratios of N-acetylaspartate (NAA) was observed as early as 1 h after the last CO administration, while the lactate (Lac) levels increased marginally. Both the Lac/Cr and NAA/Cr ratios leveled off at 6 h and showed no subsequent significant changes. In addition, compared to the control, the choline (Cho)/Cr ratio was slightly reduced in the early stages and significantly increased after 6 h. In addition, a pathological examination revealed mild cerebral edema on cessation of the insult and more severe cerebral injury after additional CO poisoning. CONCLUSION: The present study demonstrated that 1H-MRS of the brain identified early metabolic changes after CO poisoning. Notably, the relationship between the increased Cho/Cr ratio in the striatum and delayed neuropsychologic sequelae requires further research.


Assuntos
Intoxicação por Monóxido de Carbono/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Animais , Biomarcadores , Masculino , Ratos , Ratos Sprague-Dawley
13.
Cell Physiol Biochem ; 34(3): 1015-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199566

RESUMO

BACKGROUND/AIMS: Cajaninstilbene acid (3-hydroxy-4-prenyl-5-methoxystilben-2 -carboxylic acid, CSA), a natural stilbene isolated from the leaves of Cajanus cajan, has attracted considerable attention for its wide range of pharmacological activities. This study investigated whether CSA protects against corticosterone (CORT)-induced injury in PC12 cells and examined the potential mechanisms underlying this protective effect. METHODS: Cell viability and cytotoxicity were detected using a 3-(4,5-desethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay kit, respectively. PC12 cell apoptosis was measured using Hoechst 33342 staining and a DNA fragmentation assay kit, and intracellular Ca(2+) concentrations were assessed by fluorescent labelling. Next, the mitochondrial permeability transition pores (mPTPs) and mitochondrial membrane potentials (∆Ψm) were detected using a colorimetric mPTP detection kit and a 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) kit, respectively. Finally, cytochrome c, caspase-3 and inhibitor of caspase-activated deoxyribonuclease (ICAD) expression levels were monitored by western blot analysis. RESULTS: Treatment with 100 µmol/l CORT induced cytotoxicity in PC12 cells. However, CSA dose-dependently increased cell viability and decreased LDH release as well as CORT-induced apoptosis. Mechanistically, compared with the CORT-treated group, CSA strongly attenuated intracellular Ca(2+) overload and restored mitochondrial functions, including mPTPs and ∆Ψm. Furthermore, the down-regulation of cytochrome c and ICAD protein expression and the blockage of caspase-3 activity were observed upon CSA treatment. CONCLUSIONS: In summary, our data are the first to show that the in vitro antidepressant-like effect of CSA may be attributed to the cytoprotection of neurons and that such neuroprotective mechanisms are correlated with intracellular Ca(2+) homeostasis and mitochondrial apoptotic pathways.


Assuntos
Apoptose/efeitos dos fármacos , Corticosterona/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Salicilatos/farmacologia , Estilbenos/farmacologia , Animais , Corticosterona/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Células PC12 , Ratos
14.
Toxicol Appl Pharmacol ; 271(1): 114-26, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23639522

RESUMO

Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE-/-mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H2O2)-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H2O2-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H2O2-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Flavonoides/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Myrica/química , Óxido Nítrico/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
15.
Front Plant Sci ; 14: 1309038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264031

RESUMO

Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.

16.
Phytomedicine ; 82: 153434, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33529962

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system in adults. The discovery of novel anti-GBM agents based on the isocitrate dehydrogenase (IDH) mutant phenotypes and classifications have attracted comprehensive attention. PURPOSE: Diterpenoids are a class of naturally occurring 20-carbon isoprenoid compounds, and have previously been shown to possess high cytotoxicity for a variety of human tumours in many scientific reports. In the present study, 31 cassane diterpenoids of four types, namely, butanolide lactone cassane diterpenoids (I) (1-10), tricyclic cassane diterpenoids (II) (11-15), polyoxybutanolide lactone cassane diterpenoids (III) (16-23), and fused furan ring cassane diterpenoids (IV) (24-31), were tested for their anti-glioblastoma activity and mechanism underlying based on IDH1 mutant phenotypes of primary GBM cell cultures and human oligodendroglioma (HOG) cell lines. RESULTS: We confirmed that tricyclic-type (II) and compound 13 (Caesalpin A, CSA) showed the best anti-neoplastic potencies in IDH1 mutant glioma cells compared with the other types and compounds. Furthermore, the structure-relationship analysis indicated that the carbonyl group at C-12 and an α, ß-unsaturated ketone unit fundamentally contributed to enhancing the anti-glioma activity. Studies investigating the mechanism demonstrated that CSA induced oxidative stress via causing glutathione reduction and NOS activation by negatively regulating glutaminase (GLS), which proved to be highly dependent on IDH mutant type glioblastoma. Finally, GLS overexpression reversed the CSA-induced anti-glioma effects in vitro and in vivo, which indicated that the reduction of GLS contributed to the CSA-induced proliferation inhibition and apoptosis in HOG-IDH1-mu cells. CONCLUSION: Therefore, the present results demonstrated that compared with other diterpenoids, tricyclic-type diterpenoids could be a targeted drug candidate for the treatment of secondary IDH1 mutant type glioblastoma through negatively regulating GLS.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Diterpenos/farmacologia , Glioblastoma/patologia , Glutaminase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo
17.
Neurochem Int ; 147: 105051, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33979572

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor. During screening work, we found a new compound named phragmunis A (PGA), which is derived from the fruitbody of Trogia venenata, exhibits a potential cytotoxic effect on patient-derived recurrent GBM cells and temozolomide (TMZ)-resistant cell lines. The present study was designed to investigate the potential molecular mechanism of the anti-glioma effects of PGA in vitro and in vivo. Studies investigating the mechanism revealed that PGA diminished the binding efficiency of ETS family of transcription factor (ELK1) and Serum response factor (SRF), and suppressed ELK1-SRF complex-dependent transcription, which decreased the transcriptional levels of downstream genes Early growth response protein 1 (EGR1)-Polycomb ring finger (BMI1), thus inducing the imbalanced regulation between Myeloid cell leukaemia-1 (MCL1) and F-Box and WD repeat domain containing 7 (FBXW7). Finally, orthotopic xenograft models were established to confirm the anti-glioma effect of PGA on tumour growth. We showed, for the first time, that the cytotoxic effects of PGA occurred by inducing MCL1 inhibition and FBXW7 activation by blocking ELK1-SRF complex-dependent transcription. The blockage of ELK1-mediated transcription resulted in the suppression of EGR1-BMI1, which led to the upregulation of FBXW7 expression and downregulation of MCL1. These findings suggested that PGA could be a therapeutic drug candidate for the treatment of recurrent GBM by targeting the ELK1-SRF complex.


Assuntos
Proteína 7 com Repetições F-Box-WD/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fator de Resposta Sérica/efeitos dos fármacos , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/metabolismo
18.
Artigo em Zh | MEDLINE | ID: mdl-21241595

RESUMO

OBJECTIVE: To investigate the startup detail of circulation dysfunction and its role in the progress of delayed neuropsychologic sequelae (DNS) after carbon monoxide (CO) poisoning with comparison with the model of ischemia-reperfusion. METHODS: The ischemia-reperfusion rat model was established by Pulsinelli-Brierley method, and the CO poisoning rats model by i.p. injected with CO repeatedly respectively, and the rats were identified with DNS following the experiment of pathology and the ethnology. RESULTS: The whole blood viscosity, plasma viscosity, hematocrit and fibrinogen increased significantly immediately after reperfusion, and recovered gradually with the ischemia-reperfusion rat model. The whole blood viscosity decreased significantly immediately after CO treated i.p. Especially at low shear rate, the hematocrit also declined remarkably in the early stage after CO treatment. But 1day later, these parameters turned to the trend of the ischemia-reperfusion rats. There was a prominent elevation of both indexes until the 14th day following CO injection i.p. CONCLUSION: There are significantly sustained hyper-coagulation and hyper-viscosity with circulation in rats after CO poisoning compared with ischemia-reperfusion model during the period of DNS, which might contribute to increase cerebral circulation resistance, blocked blood flow, and deteriorate hypoxemia in progression of DNS.


Assuntos
Circulação Sanguínea , Intoxicação por Monóxido de Carbono/fisiopatologia , Animais , Modelos Animais de Doenças , Hemorreologia , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia
19.
Front Cell Neurosci ; 13: 61, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886573

RESUMO

Aggregated amyloid-ß protein (Aß) and Aß-induced neuronal apoptosis have been implicated as critical factors in the pathophysiology of Alzheimer's disease (AD). Certain preclinical results have indicated that the increased accumulation of protein aggregates in AD-affected neurons activates the unfolded protein response (UPR), a pathological phenomenon, which predominantly mediates the aberrant endoplasmic reticulum (ER) stress and apoptotic cascades in neuronal cells. In the present study, we confirmed that Santacruzamate A (STA, a natural product isolated from a Panamanian marine cyanobacterium) attenuates Aß protein fragment 25-35 (Aß25-35)-induced toxicity in PC12 cells and rescues cognitive deficits in APPswe/PS1dE9 mice by enhancing ER stress tolerance. We first demonstrated the anti-apoptotic effects of STA by evaluating caspase-3 activity, annexin V/propidium iodide (PI) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Behavioral testing of STA-treated APPswe/PS1dE9 mice showed that the pronounced memory impairments were ameliorated and that the consolidated memories were stably maintained over a 2-week period. The mechanistic studies provided evidence that STA inhibited Aß25-35-induced UPR and ER stress by regulating the ER retention signal (KDEL) receptor, which reinforced the retention of resident chaperones in the ER lumen. Furthermore, STA regulated the expression of the mitochondrial intermembrane space assembly protein 40 (Mia40) and augmenter of liver regeneration (ALR), which ultimately attenuated the mitochondrial fission and apoptosis pathways. Together, our present findings suggest that the KDEL receptor and Mia40-ALR play a role in mitigating Aß25-35-induced neurotoxicity, which might in turn positively regulate learning and memory. These observations support that STA may be a promising agent for reversing the progression of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA