Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 170(4): 748-759.e12, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802044

RESUMO

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Formigas/genética , Formigas/crescimento & desenvolvimento , Comportamento Animal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Comportamento Social
2.
Cell ; 170(4): 736-747.e9, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802043

RESUMO

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Comportamento Social , Sequência de Aminoácidos , Animais , Formigas/anatomia & histologia , Formigas/fisiologia , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/metabolismo , Sequência de Bases , Comportamento Animal , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Técnicas de Inativação de Genes , Proteínas de Insetos/química , Masculino , Mutação , Feromônios/metabolismo , Receptores Odorantes/química
3.
Genes Dev ; 35(7-8): 470-482, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861721

RESUMO

Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.


Assuntos
Comunicação Animal , Insetos/química , Insetos/genética , Animais , Comportamento Animal , Feromônios/genética , Sensação/genética , Comportamento Social
4.
Proc Biol Sci ; 289(1976): 20220336, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673870

RESUMO

Cuticular hydrocarbons (CHCs) serve two fundamental functions in insects: protection against desiccation and chemical signalling. How the interaction of genes shapes CHC profiles, which are essential for insect survival, adaptation and reproductive success, is still poorly understood. Here we investigate the genetic and genomic basis of CHC biosynthesis and variation in parasitoid wasps of the genus Nasonia. We mapped 91 quantitative trait loci (QTL) explaining the variation of a total of 43 CHCs in F2 hybrid males from interspecific crosses between three Nasonia species. To identify candidate genes, we localized orthologues of CHC biosynthesis-related genes in the Nasonia genomes. We discovered multiple genomic regions where the location of QTL coincides with the location of CHC biosynthesis-related candidate genes. Most conspicuously, on a region close to the centromere of chromosome 1, multiple CHC biosynthesis-related candidate genes co-localize with several QTL explaining variation in methyl-branched alkanes. The genetic underpinnings behind this compound class are not well understood so far, despite their high potential for encoding chemical information as well as their prevalence in hymenopteran CHC profiles. Our study considerably extends our knowledge on the genetic architecture governing this important compound class, establishing a model for methyl-branched alkane genetics in the Hymenoptera in general.


Assuntos
Vespas , Alcanos , Animais , Genômica , Hidrocarbonetos/química , Insetos , Masculino , Especificidade da Espécie , Vespas/genética
5.
J Exp Biol ; 225(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36073615

RESUMO

Many highly eusocial insects are characterized by morphological differences between females, which are especially pronounced in ants. How these differences associate with particular behavioral and physiological phenotypes can illuminate early ant evolution. In ants, the morphological queen usually possesses a larger thorax with wings compared with a wingless worker. While queens specialize in reproduction, workers help with non-reproductive tasks and show various levels of reproductive degeneration. Here, we investigated the level of behavioral and physiological plasticity within queens in the ant species Harpegnathos saltator, which shows limited queen-worker dimorphism. We found that the experimental removal of wings led to the expression of worker behaviors and physiology, by examining young queens with wings, known as alate gynes, and those whose wings have been experimentally removed or naturally shed, known as dealate gynes. Compared with alate gynes, dealate gynes displayed higher frequencies of behaviors that are naturally shown by workers during reproductive competition. In addition, dealate gynes exhibited a worker-like range of ovarian activity. Like workers, they lacked the putative sex pheromones on their cuticle characteristic of dispersing gynes. Because gynes activate a worker-like phenotype after wing removal, the essential difference between the queen and worker in this species is a dispersal polyphenism. If the queen plasticity observed in H. saltator reflects the early stages of ant eusociality, a dispersal dimorphism rather than a distinct reproductive dimorphism might represent an early step in ant evolution.


Assuntos
Formigas , Atrativos Sexuais , Animais , Formigas/fisiologia , Feminino , Fenótipo , Reprodução , Comportamento Sexual Animal , Asas de Animais
6.
Proc Biol Sci ; 288(1948): 20210141, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849311

RESUMO

Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.


Assuntos
Formigas , Animais , Comportamento Animal , Feminino , Humanos , Tamanho do Órgão , Reprodução , Comportamento Social , Classe Social
7.
Nat Rev Genet ; 15(10): 677-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25200663

RESUMO

Understanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour. This Review summarizes recent studies in the epigenetics of social behaviour and offers perspectives on emerging trends and prospects for establishing genetic tools in eusocial insects.


Assuntos
Comportamento Animal , Epigênese Genética/fisiologia , Insetos/fisiologia , Modelos Animais , Comportamento Social , Animais , Interação Gene-Ambiente , Instabilidade Genômica , Insetos/genética , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 114(32): 8586-8591, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28696298

RESUMO

Animals use a variety of sensory modalities-including visual, acoustic, and chemical-to sense their environment and interact with both conspecifics and other species. Such communication is especially critical in eusocial insects such as honey bees and ants, where cooperation is critical for survival and reproductive success. Various classes of chemoreceptors have been hypothesized to play essential roles in the origin and evolution of eusociality in ants, through their functional roles in pheromone detection that characterizes reproductive status and colony membership. To better understand the molecular mechanisms by which chemoreceptors regulate social behaviors, we investigated the roles of a critical class of chemoreceptors, the odorant receptors (ORs), from the ponerine ant Harpegnathos saltator in detecting cuticular hydrocarbon pheromones. In light of the massive OR expansion in ants (∼400 genes per species), a representative survey based on phylogenetic and transcriptomic criteria was carried out across discrete odorant receptor subfamilies. Responses to several classes of semiochemicals are described, including cuticular hydrocarbons and mandibular gland components that act as H. saltator pheromones, and a range of more traditional general odorants. When viewed through the prism of caste-specific OR enrichment and distinctive OR subfamily odorant response profiles, our findings suggest that whereas individual HsOrs appear to be narrowly tuned, there is no apparent segregation of tuning responses within any discrete HsOr subfamily. Instead, the HsOR gene family as a whole responds to a broad array of compounds, including both cuticular hydrocarbons and general odorants that are likely to mediate distinct behaviors.


Assuntos
Formigas , Proteínas de Insetos , Feromônios/metabolismo , Receptores Odorantes , Transcriptoma/fisiologia , Animais , Formigas/genética , Formigas/metabolismo , Comportamento Animal/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Comportamento Social
9.
J Chem Ecol ; 44(11): 999-1007, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191433

RESUMO

In comparison to the large amount of study on the communication abilities of females in ant societies and their associated chemical ecology and sensory physiology, such study of male ants has been largely ignored; accordingly, little is known about their olfactory sensory capabilities. To address this, we explored peripheral odor sensitivities in male Harpegnathos saltator by measuring the electrophysiological activity of olfactory sensory neurons within antennal trichoid and coeloconic sensilla using an extracellular recording technique. In an initial trial of 46 compounds, sensilla trichodea responded strongly to two alarm pheromone components, while a limited number of non-hydrocarbon odorants elicited strong responses in sensilla coeloconica. Both sensillar types responded indifferently to 31 cuticular hydrocarbons (CHCs) and synthetic long-chain hydrocarbons (HCs) typically found on insect cuticle. In a search for sensilla responding to CHCs and other compounds, we found some sensilla that responded to synthetic HCs and CHCs from virgin queen postpharyngeal glands that are potentially used in close range mate recognition. Olfactometer bioassays of male ants to 15 non-HCs correlated sensory responsiveness to the respective behavioral responses. Comparing olfactory responses between H. saltator males and females, we found that sensilla coeloconica and basiconica of workers showed greater responses and broader selectivity to all compounds. The rarity of CHC-responding trichoid sensilla in Harpegnathos males suggests a more specific role in sexual communication compared to that in females, which use CHCs in a broader communication context.


Assuntos
Formigas/fisiologia , Comportamento Animal , Neurônios Receptores Olfatórios/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Hidrocarbonetos/química , Hidrocarbonetos/farmacologia , Masculino , Microscopia Eletrônica de Varredura , Olfatometria , Feromônios/química , Feromônios/farmacologia , Sensilas/fisiologia
10.
Am Nat ; 187(6): 765-75, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27172595

RESUMO

Social dominance hierarchies are widespread, but little is known about the mechanisms that produce nonlinear structures. In addition to despotic hierarchies, where a single individual dominates, shared hierarchies exist, where multiple individuals occupy a single rank. In vertebrates, these complex dominance relationships are thought to develop from interactions that require higher cognition, but similar cases of shared dominance have been found in social insects. Combining empirical observations with a modeling approach, we show that all three hierarchy structures-linear, despotic, and shared-can emerge from different combinations of simple interactions present in social insects. Our model shows that a linear hierarchy emerges when a typical winner-loser interaction (dominance biting) is present. A despotic hierarchy emerges when a policing interaction is added that results in the complete loss of dominance status for an attacked individual (physical policing). Finally, a shared hierarchy emerges with the addition of a winner-winner interaction that results in a positive outcome for both interactors (antennal dueling). Antennal dueling is an enigmatic ant behavior that has previously lacked a functional explanation. These results show how complex social traits can emerge from simple behaviors without requiring advanced cognition.


Assuntos
Formigas/fisiologia , Comportamento Animal , Hierarquia Social , Agressão , Animais , Comportamento Competitivo , Feminino , Masculino , Modelos Teóricos , Reprodução/fisiologia , Predomínio Social
11.
Genome Res ; 23(3): 486-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23212948

RESUMO

In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants.


Assuntos
Formigas/genética , Cromatina/genética , Genes de Insetos , Comportamento Social , Acetilação , Animais , Formigas/crescimento & desenvolvimento , Imunoprecipitação da Cromatina , Epigênese Genética , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Larva/genética , Masculino , Processamento de Proteína Pós-Traducional/genética , Análise de Sequência de DNA
12.
Genome Res ; 23(8): 1235-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636946

RESUMO

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.


Assuntos
Formigas/genética , Genoma de Inseto , Animais , Comportamento Animal , Sítios de Ligação , Sequência Conservada , Metilação de DNA , Evolução Molecular , Regulação da Expressão Gênica , Himenópteros/genética , Proteínas de Insetos/genética , MicroRNAs/genética , Modelos Genéticos , Filogenia , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Comportamento Social , Especificidade da Espécie , Sintenia , Fatores de Transcrição/genética
13.
Annu Rev Entomol ; 60: 435-52, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341091

RESUMO

In eusocial insects, genetically identical individuals can exhibit striking differences in behavior and longevity. The molecular basis of such phenotypic plasticity is of great interest to the scientific community. DNA methylation, as well as other epigenetic signals, plays an important role in modulating gene expression and can therefore establish, sustain, and alter organism-level phenotypes, including behavior and life span. Unlike DNA methylation in mammals, DNA methylation in insects, including eusocial insects, is enriched in gene bodies of actively expressed genes. Recent investigations have revealed the important role of gene body methylation in regulating gene expression in response to intrinsic and environmental factors. In this review, we summarize recent advances in DNA methylation research and discuss its significance in our understanding of the epigenetic underpinnings of behavior and longevity.


Assuntos
Metilação de DNA , Epigênese Genética , Himenópteros/fisiologia , Isópteros/fisiologia , Animais , Comportamento Animal , Regulação da Expressão Gênica , Himenópteros/genética , Isópteros/genética , Longevidade
14.
Naturwissenschaften ; 102(11-12): 72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26585373

RESUMO

Although workers in many ant species are capable of producing their own offspring, they generally rear the queen's offspring instead. There are various mechanisms that regulate worker reproduction including inhibitory effects of ant brood. Colonies of the ant Novomessor cockerelli are monogynous and polydomous resulting in a large portion of nest workers being physically isolated from the queen for extended periods of time. Some workers experimentally isolated from the queen in laboratory nests lay viable eggs, which develop into males. We investigate the mechanism that regulates worker fertility in subnests separated from the queen by giving queenless worker groups queen-produced larvae, queen-produced eggs, or no brood. Our findings show that larvae delay the time to worker egg-laying, but eggs have no effect. Larval inhibition is a likely mechanism that contributes to the regulation of worker reproduction in N. cockerellli because larvae are easily transported to subnests that do not contain a queen.


Assuntos
Formigas/fisiologia , Animais , Feminino , Larva , Masculino , Oviposição/fisiologia , Reprodução/fisiologia , Fatores de Tempo
15.
PLoS Genet ; 8(8): e1002930, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952454

RESUMO

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs). Our phylogenetic analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many chemoreceptors that are differentially expressed between males and females and between species. We have also revealed an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H. saltator, and thus are targets for further functional characterization. Our findings represent an important advance toward understanding the molecular basis of social interactions and the differential chemical ecologies among ant species.


Assuntos
Formigas , Feromônios , Receptores Ionotrópicos de Glutamato , Receptores Odorantes , Animais , Formigas/genética , Formigas/metabolismo , Formigas/fisiologia , Comportamento Animal/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Feromônios/genética , Feromônios/metabolismo , Filogenia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Caracteres Sexuais , Comportamento Social , Especificidade da Espécie
16.
J Exp Biol ; 217(Pt 9): 1496-503, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436385

RESUMO

Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduction and behavior in this context must be coordinated through crosstalk between the brain and the reproductive system. We investigated a role for biogenic amines in forming this connection in the ant Harpegnathos saltator. In this species, workers engage in an elaborate dominance tournament to establish a group of reproductive workers termed gamergates. We analyzed biogenic amine content in the brains of gamergates, inside-workers and foragers under stable colony conditions and found that gamergates had the highest levels of dopamine. Dopamine levels were also positively correlated with increased ovarian activity among gamergates. Next, we experimentally induced workers to compete in a reproductive tournament to determine how dopamine may be involved in the establishment of a new hierarchy. Dopamine levels rose in aggressive workers at the start of a tournament, while workers that were policed by their nestmates (a behavior that inhibits ovarian activity) showed a rapid decline in dopamine. In addition to dopamine, levels of serotonin and tyramine differed among castes, and these changes could contribute to differences in caste-specific behavioral patterns observed among non-reproductive workers. Overall, these results provide support that biogenic amines link changes in behavior and dominance with reproductive activity in H. saltator as well as drive differences in worker task performance.


Assuntos
Formigas/fisiologia , Neurotransmissores/biossíntese , Reprodução/fisiologia , Predomínio Social , Agressão , Animais , Comportamento Animal/fisiologia , Aminas Biogênicas , Encéfalo/metabolismo , Feminino , Ovário/fisiologia
17.
Proc Biol Sci ; 279(1738): 2662-71, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398169

RESUMO

Cooperative brood care is assumed to be the common driving factor leading to sociality. While this seems to be true for social Hymenoptera and many cooperatively breeding vertebrates, the importance of brood care for the evolution of eusociality in termites is unclear. A first step in elucidating this problem is an assessment of the ancestral condition in termites. We investigated this by determining the overall level of brood care behaviour across four termite species that cover the phylogenetic diversity of the lower termites. Brood care was low in the three species (all from different families) that had an ancestral wood-dwelling lifestyle of living in a single piece of wood that serves as food and shelter. In the fourth species, a lower termite that evolved outside foraging, brood care was more common. Together with data for higher termites, this suggests that brood care in termites only becomes important when switching from a wood-dwelling to a foraging lifestyle. These results imply that early social evolution in termites was driven by benefits of increased defence, while eusociality in Hymenoptera and cooperative breeding in birds and mammals are primarily based on brood care.


Assuntos
Evolução Biológica , Cruzamento , Isópteros/fisiologia , Comportamento Social , Animais , Comportamento Cooperativo , Isópteros/classificação , Isópteros/genética , Reprodução
18.
Artigo em Inglês | MEDLINE | ID: mdl-21773739

RESUMO

The regulation of reproduction within insect societies is a key component of the evolution of eusociality. Differential patterns of hormone levels often underlie the reproductive division of labor observed among colony members, and further task partitioning among workers is also often correlated with differences in juvenile hormone (JH) and ecdysteroid content. We measured JH and ecdysteroid content of workers and queens of the ant Harpegnathos saltator. In this species, new colonies are founded by a single queen, but after she dies workers compete in an elaborate dominance tournament to decide a new group of reproductives termed "gamergates." Our comparisons revealed that queens, gamergates, and inside workers (non-reproductive) did not differ in levels of JH or ecdysteroids. However, increased JH and decreased ecdysteroid content was observed in outside workers exhibiting foraging behavior. Application of a JH analog to virgin queens of H. saltator, although effective at inducing dealation, failed to promote egg production. Together, these results support the hypothesis that JH has lost its reproductive function in H. saltator to regulate foraging among the worker caste.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Sistema Endócrino/fisiologia , Hormônios/metabolismo , Reprodução/fisiologia , Predomínio Social , Animais , Ecdisteroides/fisiologia , Sistema Endócrino/metabolismo , Feminino , Sesquiterpenos/metabolismo
19.
Naturwissenschaften ; 98(3): 237-40, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21253684

RESUMO

In many social taxa, reproductively dominant individuals sometimes use aggression to secure and maintain reproductive status. In the social insects, queen aggression towards subordinate individuals or workers has been documented and is predicted to occur only in species with a small colony size and a low level of queen-worker dimorphism. We report queen aggression towards reproductive workers in the ant species Aphaenogaster cockerelli, a species with a relatively large colony size and a high level of reproductive dimorphism. Through analysis of cuticular hydrocarbon profiles, we show that queens are aggressive only to reproductively active workers. Non-reproductive workers treated with a hydrocarbon typical for reproductives are attacked by workers but not by queens, which suggests different ways of recognition. We provide possible explanations of why queen aggression is observed in this species.


Assuntos
Formigas/fisiologia , Agressão/fisiologia , Animais , Feminino , Hidrocarbonetos/farmacologia , Masculino , Reprodução/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia
20.
J Chem Ecol ; 37(11): 1242-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22095515

RESUMO

Queens in social insect colonies advertise their presence in the colony to: a) attract workers' attention and care; b) gain acceptance by workers as replacement or supplemental reproductives; c) prevent reproductive development in nestmates. We analyzed the chemical content of whole body surface extracts of adult queens of different developmental and reproductive stages, and of adult workers from monogyne (single colony queen) and polygyne (multiple colony queens) forms of the fire ant Solenopsis invicta. We found that the composition of the most abundant components, venom alkaloids, differed between queens and workers, as well as between reproductive and non-reproductive queens. Additionally, workers of the two forms could be distinguished by alkaloid composition. Finally, sexually mature, non-reproductive queens from polygyne colonies differed in their proportions of cis-piperidine alkaloids, depending on their Gp-9 genotype, although the difference disappeared once they became functional reproductives. Among the unsaturated cuticular hydrocarbons characteristic of queens, there were differences in amounts of alkenes/alkadienes between non-reproductive polygyne queens of different Gp-9 genotypes, between non-reproductive and reproductive queens, and between polygyne and monogyne reproductive queens, with the amounts increasing at a relatively higher rate through reproductive ontogeny in queens bearing the Gp-9 b allele. Given that the genotype-specific piperidine differences reflect differences in rates of reproductive maturation between queens, we speculate that these abundant and unique compounds have been co-opted to serve in fertility signaling, while the cuticular hydrocarbons now play a complementary role in regulation of social organization by signaling queen Gp-9 genotype.


Assuntos
Alcaloides/análise , Formigas/química , Formigas/genética , Genótipo , Hidrocarbonetos/análise , Peçonhas/química , Animais , Formigas/efeitos dos fármacos , Formigas/fisiologia , Feminino , Fertilidade , Feromônios/análise , Feromônios/farmacologia , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA