Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 193: 106773, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960213

RESUMO

Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.

2.
Med Mycol ; 62(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38061839

RESUMO

Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.


International research collaborations have evident its significance in impactful work covering all aspects of Candida pathogenicity. Its current, diverse research was discussed thematically based on the comprehensive scientometric analysis with unidentified hub representatives for subsequent work.


Assuntos
Candidíase , Vacinas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/microbiologia , Candidíase/veterinária , Testes de Sensibilidade Microbiana/veterinária , Virulência , Bibliometria
3.
Microb Pathog ; 176: 106025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754101

RESUMO

Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.


Assuntos
Fatores de Virulência , Peixe-Zebra , Animais , Humanos , Fosfopiruvato Hidratase , Interações entre Hospedeiro e Microrganismos , Candida albicans
4.
Microb Pathog ; 169: 105637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710088

RESUMO

Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.


Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Tipagem de Sequências Multilocus , Estudos Prospectivos , Fatores de Virulência/genética
5.
Med Mycol ; 59(12): 1127-1144, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34506621

RESUMO

Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans. LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.


Assuntos
Candida , Candidíase Invasiva , Animais , Antifúngicos/uso terapêutico , Candida albicans , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/veterinária , Fatores de Virulência
6.
J Microbiol Methods ; 219: 106897, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342249

RESUMO

Salmonella is as an intracellular bacterium, causing many human fatalities when the host-specific serotypes reach the host gastrointestinal tract. Nontyphoidal Salmonella are responsible for numerous foodborne outbreaks and product recalls worldwide whereas typhoidal Salmonella are responsible for Typhoid fever cases in developing countries. Yet, Salmonella-related foodborne disease outbreaks through its food and water contaminations have urged the advancement of rapid and sensitive Salmonella-detecting methods for public health protection. While conventional detection methods are time-consuming and ineffective for monitoring foodstuffs with short shelf lives, advances in microbiology, molecular biology and biosensor methods have hastened the detection. Here, the review discusses Salmonella pathogenic mechanisms and its detection technology advancements (fundamental concepts, features, implementations, efficiency, benefits, limitations and prospects). The time-efficiency of each rapid test method is discussed in relation to their limit of detections (LODs) and time required from sample enrichment to final data analysis. Importantly, the matrix effects (LODs and sample enrichments) were compared within the methods to potentially speculate Salmonella detection from environmental, clinical or food matrices using certain techniques. Although biotechnological advancements have led to various time-efficient Salmonella-detecting techniques, one should consider the usage of sophisticated equipment to run the analysis by moderately to highly trained personnel. Ultimately, a fast, accurate Salmonella screening that is readily executed by untrained personnels from various matrices, is desired for public health procurement.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Humanos , Microbiologia de Alimentos , Salmonella , Doenças Transmitidas por Alimentos/microbiologia , Alimentos , Técnicas Biossensoriais/métodos
7.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189364

RESUMO

Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards ß-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.

8.
PeerJ ; 9: e11315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046253

RESUMO

BACKGROUND: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. SURVEY METHODOLOGY AND OBJECTIVES: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. CONCLUSIONS: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA