Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(5): e2200798, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639862

RESUMO

Inverse vulcanization techniques are used to fabricate thermodynamically stable, sulfur polymers. Sulfur-based polymers exhibit higher refractive indices and improved transparency in the mid-wave infrared region compared with most organic polymers. Herein, the postsynthetic modification of sulfur polymers created via inverse vulcanization to generate novel, inorganic/organic photoresists is discussed. Amine-containing sulfur resins are postfunctionalized with cross-linkable alkynes. The sulfur-based materials undergo rapid photo-crosslinking to generate patternable films within 10 min under UV irradiation (365 nm). The development of these resins enables sulfur polymers to be utilized in processes where spatial and hierarchical control is necessary. The generation of this class of materials also expands on sulfur-based organic polymer systems with optical applications.


Assuntos
Polímeros , Enxofre , Raios Ultravioleta
2.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984126

RESUMO

Cholesteric liquid crystals (CLC) are molecules that can self-assemble into helicoidal superstructures exhibiting circularly polarized reflection. The facile self-assembly and resulting optical properties makes CLCs a promising technology for an array of industrial applications, including reflective displays, tunable mirror-less lasers, optical storage, tunable color filters, and smart windows. The helicoidal structure of CLC can be stabilized via in situ photopolymerization of liquid crystal monomers in a CLC mixture, resulting in polymer-stabilized CLCs (PSCLCs). PSCLCs exhibit a dynamic optical response that can be induced by external stimuli, including electric fields, heat, and light. In this review, we discuss the electro-optic response and potential mechanism of PSCLCs reported over the past decade. Multiple electro-optic responses in PSCLCs with negative or positive dielectric anisotropy have been identified, including bandwidth broadening, red and blue tuning, and switching the reflection notch when an electric field is applied. The reconfigurable optical response of PSCLCs with positive dielectric anisotropy is also discussed. That is, red tuning (or broadening) by applying a DC field and switching by applying an AC field were both observed for the first time in a PSCLC sample. Finally, we discuss the potential mechanism for the dynamic response in PSCLCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA