Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 126(Pt 17): 3884-92, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23843608

RESUMO

Tubular sclerosis complex gene products TSC1 and TSC2 have evolutionarily conserved roles in cell growth from Drosophila to mammals. Here we reveal important roles for TSC1/2 in regulating intestinal stem cell (ISC) maintenance and differentiation of the enteroendocrine cell lineage in the Drosophila midgut. Loss of either the Tsc1 or Tsc2 gene in ISCs causes rapid ISC loss through TORC1 hyperactivation, because ISCs can be efficiently rescued by mutation of S6k or by rapamycin treatment. In addition, overexpression of Rheb, which triggers TORC1 activation, recapitulates the phenotype caused by TSC1/2 disruption. Genetic studies suggest that TSC1/2 maintains ISCs independently of nutritional status or Notch regulation, probably by inhibiting cell delamination. We show that Tsc1/Tsc2 mutant ISCs can efficiently produce enterocytes but not enteroendocrine cells, and this altered differentiation potential is also caused by hyperactivation of TORC1. Reduced TORC1-S6K signaling by mutation of S6k, however, has no effect on ISC maintenance or cell lineage differentiation. Our studies demonstrate that hyperactivation of TORC1 following the loss of TSC1/2 is detrimental to stem cell maintenance and multiple lineage differentiation in the Drosophila ISC lineage, a mechanism that could be conserved in other stem cell lineages, including that in humans.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Dieta , Drosophila melanogaster , Enterócitos/metabolismo , Células Enteroendócrinas/metabolismo , Intestinos/citologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Receptores Notch/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Transdução de Sinais/genética , Sirolimo/farmacologia
2.
Dev Biol ; 377(1): 177-87, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23410794

RESUMO

Tissue-specific stem cells are maintained by both local secreted signals and cell adhesion molecules that position the stem cells in the niche microenvironment. In the Drosophila midgut, multipotent intestinal stem cells (ISCs) are located basally along a thin layer of basement membrane that composed of extracellular matrix (ECM), which separates ISCs from the surrounding visceral musculature: the muscle cells constitute a regulatory niche for ISCs by producing multiple secreted signals that directly regulate ISC maintenance and proliferation. Here we show that integrin-mediated cell adhesion, which connects the ECM and intracellular cytoskeleton, is required for ISC anchorage to the basement membrane. Specifically, the α-integrin subunits including αPS1 encoded by mew and αPS3 encoded by scb, and the ß-integrin subunit encoded by mys are richly expressed in ISCs and are required for the maintenance, rather than their survival or multiple lineage differentiation. Furthermore, ISC maintenance also requires the intercellular and intracellular integrin signaling components including Talin, Integrin-linked kinase (Ilk), and the ligand, Laminin A. Notably, integrin mutant ISCs are also less proliferative, and genetic interaction studies suggest that proper integrin signaling is a pre-requisite for ISC proliferation in response to various proliferative signals and for the initiation of intestinal hyperplasia after loss of adenomatous polyposis coli (Apc). Our studies suggest that integrin not only functions to anchor ISCs to the basement membrane, but also serves as an essential element for ISC proliferation during normal homeostasis and in response to oncogenic mutations.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Integrinas/metabolismo , Intestinos/citologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Hiperplasia
3.
Nature ; 455(7216): 1119-23, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18806781

RESUMO

In the Drosophila midgut, multipotent intestinal stem cells (ISCs) that are scattered along the epithelial basement membrane maintain tissue homeostasis by their ability to steadily produce daughters that differentiate into either enterocytes or enteroendocrine cells, depending on the levels of Notch activity. However, the mechanisms controlling ISC self-renewal remain elusive. Here we show that a canonical Wnt signalling pathway controls ISC self-renewal. The ligand Wingless (Wg) is specifically expressed in the circular muscles next to ISCs, separated by a thin layer of basement membrane. Reduced function of wg causes ISC quiescence and differentiation, whereas wg overexpression produces excessive ISC-like cells that express high levels of the Notch ligand, Delta. Clonal analysis shows that the main downstream components of the Wg pathway, including Frizzled, Dishevelled and Armadillo, are autonomously required for ISC self-renewal. Furthermore, epistatic analysis suggests that Notch acts downstream of the Wg pathway and a hierarchy of Wg/Notch signalling pathways controls the balance between self-renewal and differentiation of ISCs. These data suggest that the underlying circular muscle constitutes the ISC niche, which produce Wg signals that act directly on ISCs to promote ISC self-renewal. This study demonstrates markedly conserved mechanisms regulating ISCs from Drosophila to mammals. The identification of the Drosophila ISC niche and the principal self-renewal signal will facilitate further understanding of intestinal homeostasis control and tumorigenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Comunicação Parácrina , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Wnt1/metabolismo , Animais , Proliferação de Células , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Intestinos/citologia , Músculos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
4.
Dev Biol ; 354(1): 31-43, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21440535

RESUMO

Tissue-specific adult stem cells are commonly associated with local niche for their maintenance and function. In the adult Drosophila midgut, the surrounding visceral muscle maintains intestinal stem cells (ISCs) by stimulating Wingless (Wg) and JAK/STAT pathway activities, whereas cytokine production in mature enterocytes also induces ISC division and epithelial regeneration, especially in response to stress. Here we show that EGFR/Ras/ERK signaling is another important participant in promoting ISC maintenance and division in healthy intestine. The EGFR ligand Vein is specifically expressed in muscle cells and is important for ISC maintenance and proliferation. Two additional EGFR ligands, Spitz and Keren, function redundantly as possible autocrine signals to promote ISC maintenance and proliferation. Notably, over-activated EGFR signaling could partially replace Wg or JAK/STAT signaling for ISC maintenance and division, and vice versa. Moreover, although disrupting any single one of the three signaling pathways shows mild and progressive ISC loss over time, simultaneous disruption of them all leads to rapid and complete ISC elimination. Taken together, our data suggest that Drosophila midgut ISCs are maintained cooperatively by multiple signaling pathway activities and reinforce the notion that visceral muscle is a critical component of the ISC niche.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Intestinos/citologia , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
J Mol Cell Biol ; 2(1): 37-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19797317

RESUMO

Drosophila and mammalian intestinal stem cells (ISCs) share similarities in their regulatory mechanisms, with both requiring Wingless (Wg)/Wnt signaling for their self-renewal, although additional regulatory mechanisms are largely unknown. Here we report the identification of Unpaired as another paracrine signal from the muscular niche, which activates a canonical JAK/STAT signaling cascade in Drosophila ISCs to regulate ISC self-renewal and differentiation. We show that compromised JAK signaling causes ISC quiescence and loss, whereas signaling overactivation produces extra ISC-like and progenitor cells. Simultaneous disruption or activation of both JAK and Wg signaling in ISCs results in a stronger ISC loss or a greater expansion of ISC-like cells, respectively, than by altering either pathway alone, indicating that the two pathways function in parallel. Furthermore, we show that loss of JAK signaling causes blockage of enteroblast differentiation and reduced JAK signaling preferentially affects enteroendocrine (ee) cell differentiation. Conversely, JAK overactivation produces extra differentiated cells, especially ee cells. Together with the functional analysis with Notch (N), we suggest two separate roles of JAK/STAT signaling in Drosophila ISC lineages: it functions upstream of N, in parallel and cooperatively with Wg signaling to control ISC self-renewal; it also antagonizes with N activity to control the binary fate choice of intestinal progenitor cells.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Janus Quinases/metabolismo , Comunicação Parácrina , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Mucosa Intestinal/metabolismo , Intestinos/citologia , Janus Quinases/genética , Fatores de Transcrição STAT/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
6.
Fly (Austin) ; 2(6): 310-2, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19077540

RESUMO

Stem cells are typically supported by the local tissue microenvironment named niche. Intestinal stem cells (ISCs) in the Drosophila midgut do not seem to be typical: they are scattered along the basement membrane composed of extracellular matrix, and are not associated with any obvious cellular niches. In addition, regulatory mechanisms controlling ISC self-renewal remain unknown. Recently, we have obtained evidence to show that Wingless signaling is critical for ISC self-renewal. Wingless is specifically produced from the underlying circular muscles and is able to traverse through the basement membrane and reach ISCs, where it activates a canonical Wnt signaling pathway to promote ISC self-renewal. Our study reveals a muscular niche for ISCs and Wnt signaling as a conserved mechanism regulating ISC self-renewal from Drosophila to mammals. Here we provide a brief overview of our findings, and discuss future perspectives on the regulatory mechanisms underlying ISC self-renewal and differentiation.


Assuntos
Proteínas de Drosophila/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Proteína Wnt1/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Drosophila melanogaster , Intestinos/citologia , Músculos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA