Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Am Chem Soc ; 146(11): 7363-7372, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452363

RESUMO

A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.

2.
Small ; 20(22): e2309727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112245

RESUMO

Integrating single atoms and clusters into one system represents a novel strategy for achieving the desired catalytic performance. In comparison to single-atom catalysts, catalysts combining single atoms and clusters harness the advantages of both, thus displaying greater potential. Nevertheless, constructing single-atom-cluster systems remains challenging, and the fundamental mechanism for enhancing catalytic activity remains elusive. In this study, a directly confined preparation of a 3D hollow sea urchin-like carbon structure (MnSA/MnAC-SSCNR) is developed. Mn single atoms synergistically interact with Mn clusters, optimizing and reducing energy barriers in the reaction pathway, thus enhancing reaction kinetics. Consequently, in contrast to Mn single-atom catalysts (MnSA-SSCNR), MnSA/MnAC-SSCNR exhibits significantly improved oxygen reduction activity, with a half-wave potential (E1/2) of 0.90 V in 0.1 m KOH, surpassing that of MnSA-SSCNR and Pt/C. This work demonstrates a strategy of remote synergy between heterogeneous single atoms and clusters, which not only contributes to electrocatalytic reactions but also holds potential for reactions involving more complex products.

3.
Angew Chem Int Ed Engl ; 63(16): e202319518, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38389132

RESUMO

Oxygen reduction reaction (ORR) is the bottleneck of metal-air batteries and fuel cells. Strain regulation can change the geometry and adjust the surface charge distribution of catalysts, which is a powerful strategy to optimize the ORR activity. The introduction of controlled strain to the material is still difficult to achieve. Herein, we present a temperature-pressure-induced strategy to achieve the controlled lattice strain for metal coordination polymers. Through the systematic study of the strain effect on ORR performance, the relationship between geometric and electronic effects is further understood and confirmed. The strained Co-DABDT (DABDT=2,5-diaminobenzene-1,4-dithiol) with 2 % lattice compression exhibits a superior half-wave potential of 0.81 V. Theoretical analysis reveals that the lattice strain changes spin-charge densities around S atoms for Co-DABDT, and then regulates the hydrogen bond interaction with intermediates to promote the ORR catalytic process. This work helps to understand the catalytic mechanism from the atomic level.

4.
J Am Chem Soc ; 144(40): 18435-18443, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170558

RESUMO

Rechargeable aqueous Zn metal batteries have become promising candidates for large-scale electrochemical energy storage owing to their high safety and affordable low cost. However, Zn metal anode suffers from dendritic growth and hydrogen evolution reaction (HER), deteriorating the electrochemical performance. Here, we demonstrate that these challenges can be conquered by introducing a halogen ion into the Zn2+ solvation structure. By designing an electrolyte composed of zinc acetate and ammonium halide, the electron-donating anion I- can coordinate with Zn2+ and transform the traditional Zn(H2O)62+ to ZnI(H2O)5+, in which I- could transfer electrons into H2O and thus suppress HER. The dynamic electrostatic shielding layer formed by concomitant NH4+ can restrict the dendritic growth. As a result, the halogenated electrolyte achieves a high initial coulombic efficiency (CE) of 99.3% in the Zn plating/stripping process and remains at an average of ∼99.8% with uniform Zn deposition. Moreover, Zn-I batteries are constructed by using dissociative I- as the cathode and carbon felt-polyaniline as the conductive and adsorptive layer, exhibiting an average CE of 98.6% without capacity decay after 300 cycles. This work provides insights into the halogenated Zn2+ solvation structure and offers a general electrolyte design strategy for achieving a highly reversible Zn metal anode and batteries.

5.
J Am Chem Soc ; 144(18): 8204-8213, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471968

RESUMO

Aqueous-phase oxygen evolution reaction (OER) is the bottleneck of water splitting. The formation of the O-O bond involves the generation of paramagnetic oxygen molecules from the diamagnetic hydroxides. The spin configurations might play an important role in aqueous-phase molecular electrocatalysis. However, spintronic electrocatalysis is almost an uncultivated land for the exploration of the oxygen molecular catalysis process. Herein, we present a novel magnetic FeIII site spin-splitting strategy, wherein the electronic structure and spin states of the FeIII sites are effectively induced and optimized by the Jahn-Teller effect of Cu2+. The theoretical calculations and operando attenuated total reflectance-infrared Fourier transform infrared (ATR FT-IR) reveal the facilitation for the O-O bond formation, which accelerates the production of O2 from OH- and improves the OER activity. The Cu1-Ni6Fe2-LDH catalyst exhibits a low overpotential of 210 mV at 10 mA cm-2 and a low Tafel slope (33.7 mV dec-1), better than those of the initial Cu0-Ni6Fe2-LDHs (278 mV, 101.6 mV dec-1). With the Cu2+ regulation, we have realized the transformation of NiFe-LDHs from ferrimagnets to ferromagnets and showcase that the OER performance of Cu-NiFe-LDHs significantly increases compared with that of NiFe-LDHs under the effect of a magnetic field for the first time. The magnetic-field-assisted Cu1-Ni6Fe2-LDHs provide an ultralow overpotential of 180 mV at 10 mA cm-2, which is currently one of the best OER performances. The combination of the magnetic field and spin configuration provides new principles for the development of high-performance catalysts and understandings of the catalytic mechanism from the spintronic level.

6.
Cerebellum ; 21(3): 358-367, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34264505

RESUMO

Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.


Assuntos
Imagem de Tensor de Difusão , Ataxias Espinocerebelares , Cerebelo , Humanos , Imageamento por Ressonância Magnética , Linhagem , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
7.
J Appl Microbiol ; 133(2): 883-897, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35491748

RESUMO

AIM: To investigate the broad-spectrum antifungal activity of Burkholderia sp. BV6, that is isolated from rice roots and its biocontrol potential against rice blast caused by Magnaporthe oryzae. METHODS AND RESULTS: We evaluated the ability to isolate BV6 in the biological control of rice blast disease and investigated its antifungal mechanisms. BV6 strongly inhibited the hyphal growth of M. oryzae Guy11 and other plant pathogenic fungi, and pot experiments showed that BV6 significantly decreases the disease index of rice blast from 47.5 to 24.6. The secreted small-molecule secondary metabolites were regarded as weapons during the antifungal process by inhibiting the germination of M. oryzae conidia and mycelial growth, and thereby prevent the following infection. Liquid chromatography-mass spectrometry analysis of the metabolites from the supernatant of isolate BV6 showed that the antifungal weapons of isolate BV6 are novel, small, molecular hydrophilic compounds that are different from reported antifungal compounds. CONCLUSIONS: The isolate BV6 inhibits the M. oryzae infection by the production of small-molecule antifungal compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study discovers the role of the Burkholderia sp. BV6 in the biocontrol of plant pathogenic fungi. Therefore, isolate BV6 is a potential candidate for developing a microbial formulation for the biocontrol of the most common disease of rice blast.


Assuntos
Burkholderia , Magnaporthe , Oryza , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
8.
Proc Natl Acad Sci U S A ; 120(32): e2221766120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531391
9.
Angew Chem Int Ed Engl ; 60(31): 16937-16941, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34051024

RESUMO

Non-noble transition metal complexes have attracted growing interest as efficient electrocatalysts for oxygen reduction reaction (ORR) while their activities still lack rational and effective regulation. Herein, we propose a d-π conjugation strategy for rough and fine tuning of ORR activity of TM-BTA (TM=Mn/Fe/Co/Ni/Cu, BTA=1,2,4,5-benzenetetramine) coordination polymers. By first-principle calculations, we elucidate that the strong d-π conjugation elevates the dxz /dyz orbitals of TM centers to enhance intermediate adsorption and strengthens the electronic modulation effect from substitute groups on ligands. Based on this strategy, Co-TABQ (tetramino benzoquinone) is found to approach the top of ORR activity volcano. The synthesized Co-TABQ with atomically distributed Co on carbon nanotubes exhibits a half-wave potential of 0.85 V and a specific current of 127 mA mgmetal -1 at 0.8 V, outperforming the benchmark Pt/C. The high activity, low peroxide yield, and considerable durability of Co-BTA and Co-TABQ promise their application in oxygen electrocatalysis. This study provides mechanistic insight into the rational design of transition metal complex catalysts.

10.
Angew Chem Int Ed Engl ; 60(43): 23357-23364, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34382322

RESUMO

Rechargeable aqueous Zn batteries are potential for large-scale electrochemical energy storage due to their low cost and high security. However, Zn metal anode suffers from the dendritic growth and interfacial hydrogen evolution reaction (HER), resulting in the deterioration of electrode/battery performance. Here we propose that both dendrites and HER are related to the water participated Zn2+ solvation structure-Zn(H2 O)6 2+ and thus can be resolved by transforming Zn(H2 O)6 2+ to an anion-type water-free solvation structure-ZnCl4 2- , which is achieved in traditional ZnSO4 aqueous electrolyte after adding chloride salt with a bulky cation (1-ethyl-3-methylimidazolium chloride). The elimination of cation-water interaction suppresses HER, while the electrostatic repulsion between Zn tips and the anion solvation structure inhibits dendrite formation. As a result, the electrolyte shows uniform Zn deposition with an average Zn plating/stripping Coulombic efficiency of ≈99.9 %, enabling a capacity retention of 78.8 % after 300 cycles in anode-free Zn batteries with pre-zincificated polyaniline as the cathode. This work provides a novel electrolyte design strategy to prevent HER and realize long-lifespan metal anode.

11.
Environ Res ; 182: 109097, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911234

RESUMO

The El Niño event is a major large-scale air-sea interaction phenomenon over the tropical Pacific region. Previous studies classified El Niño into three types - canonical El Niño, El Niño Modoki I, and El Niño Modoki II. This research reveals that different types of El Niño present dramatic effects on the interannual variability of sea surface salinity over the central equatorial Indian Ocean in the boreal autumn. The decreasing (increasing) sea surface salinity during the canonical El Niño and the EI Niño Modoki I (the EI Niño Modoki II) events is identified. The salinity budget analysis is performed to identify the dominant factors responsible for the variability of sea surface salinity over the central Indian Ocean. The results indicate that the wind-driven anomalous zonal advection plays an important role in sea surface salinity variability during the El Niño events associated with the forcing from the anomalous Walker circulation over the equatorial Indian Ocean.


Assuntos
El Niño Oscilação Sul , Salinidade , Oceano Índico , Estações do Ano , Vento
12.
J Clin Biochem Nutr ; 67(2): 126-130, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041508

RESUMO

Severe patients of the coronavirus disease 2019 (COVID-19) may progress rapidly to critical stage. This study aimed to identify factors useful for predicting the progress. 33 severe COVID-19 patients at the intensive care unit were included in this study. During treatment, 13 patients deteriorated and required further treatment for supporting organ function. The remaining 20 patients alleviated and were transferred to the general wards. The multivariate COX regression analyses showed that hypoproteinemia was an independent risk factor associated with deterioration of severe patients (HR, 0.763; 95% CI, 0.596 to 0.978; p = 0.033). The restricted cubic spline indicated that when HR = 1, the corresponding value of albumin is 29.6 g/L. We used the cutoff of 29.6 g/L to divide these patients. Kaplan-Meier curves showed that the survival rate of the high-albumin group was higher than that of the low-albumin group. Therefore, hypoalbuminemia may be an independent risk factor to evaluate poor prognosis of severely patients with COVID-19, especially when albumin levels were below 29.6 g/L.

13.
Inorg Chem ; 58(17): 11449-11457, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397562

RESUMO

MOFs present potential application in electrocatalysis. The structure-activity of the Ni-MOFs with different morphologies, nanowires, neurons, and urchins is systemically investigated. The Ni-MOFs were controllably synthesized via the facile solvothermal method. Among them, the Ni-MOF nanowires are endowed with the highest electrocatalytic activity due to the unique structure, more exposed active sites, lower charge transfer resistance, and the fast and direct electron transfer in 1D structures. The typical morphology of the Ni-MOF nanowires is ca. 10 nm in diameter and several micrometers in length. When employed as an electrocatalyst in urea oxidation reaction, it exhibits a lower overpotential than and superior stability to the Ni-MOFs with other morphologies. Ni-MOF nanowires require a potential of ∼0.80 V (vs Ag/AgCl) to obtain 160 mA cm-2. In addition, after continuous electrocatalyzing for 3600 s at 0.40 V (vs Ag/AgCl), the current density retention of Ni-MOF nanowires could still reach more than 60% (>12 mA cm-2), which demonstrates Ni-MOF nanowires as promising electrocatalysts for urea oxidation.

14.
Inorg Chem ; 58(6): 4014-4018, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843395

RESUMO

The development of novel and highly efficient bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an ongoing challenge. The Cr3+ cation has a special electronic configuration (t32ge0g), which facilitates charge transfer and electron capture. However, Cr-based materials applied on water-splitting electrocatalysis is still a research void up to now. Herein, a novel amorphous γ-CrOOH was developed as a bifunctional electrocatalyst toward overall water splitting for the first time. It shows extraordinary HER activity with an ultralow overpotential of only 149 mV at 50 mA cm-2. Meantime, there is a small overpotential of 334 mV at 50 mA cm-2 for the OER. Importantly, the bifunctional electrocatalyst for overall water-splitting electrocatalysis can work with a cell voltage of merely 1.56 V at 10 mA cm-2. Amorphous γ-CrOOH has effectively enhanced the intrinsic electrochemical activity via density functional theoretical calculations. Therefore, this work not only provides a new method for preparation of amorphous γ-CrOOH but also expands the types of catalysts for water splitting.

15.
Gen Comp Endocrinol ; 270: 82-89, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339804

RESUMO

Twenty kilodalton human growth hormone (20K-GH) is the second most abundant GH isoform after the twenty-two kilodalton human growth hormone (22 K-GH) isoform. 20K-GH exhibits similar but not identical physiological activities as that of 22K-GH. The cell behaviour of 22K-GH has been extensively studied, but little or no information has been reported regarding 20K-GH. Here, we focussed on the internalization of 20K-GH. We found that the internalization of 20K-GH is rapid and occurs in a time- and dose-dependent manner. 20K-GH internalization is mediated by GHR. It appears that the internalization of 20K-GH and GHR into the cytoplasm is mediated by clathrin and/or caveolin. The current study indicates that 20K-GH can internalize into the cytoplasm and suggests that the internalized 20K-GH may exhibit different functions from those of 22K-GH.


Assuntos
Hormônio do Crescimento Humano/metabolismo , Antineoplásicos Hormonais , Hormônio do Crescimento , Humanos , Isoformas de Proteínas
16.
Nanotechnology ; 29(21): 215602, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29515020

RESUMO

A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

17.
Nanotechnology ; 28(18): 185401, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28291740

RESUMO

Large over-potentials during battery operation remain a big obstacle for aprotic Li-O2 batteries. Herein, a nanocomposite of about 4 nm cobalt monoxide nanocrystals grown in situ on reduced graphene oxide substrates (CoO/RGO) has been synthesized via a thermal decomposition method. The CoO/RGO cathode delivers a high initial capacity of 14 450 mAh g-1 at a current density of 200 mA g-1. Simultaneously it displays little capacity fading after 32 cycles with a capacity restriction of 1000 mAh g-1. Additionally, compared with Ketjenblack and general CoO nanoparticles, ultrathin CoO nanoparticle-decorated RGO electrode materials with a delaminated structure display an observable reduction of over-potential in Li-O2 batteries. These results demonstrate that the introduction of RGO improves the performance of CoO, which is a promising strategy for optimizing the design of electrocatalysts for aprotic rechargeable Li-O2 batteries.

18.
Biomed Chromatogr ; 31(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27808430

RESUMO

An extracellular collagenolytic serine protease was purified from Aspergillus sp., isolated from the Caatinga biome in northeast Brazil by a two-step chromatographic procedure, using an anion-exchanger and gel filtration. The enzyme was produced by submerged fermentation of feather residue as a substrate. The purified collagenase showed a 2.09-fold increase in specific activity and 22.85% yield. The enzyme was a monomeric protein with a molecular mass of 28.7 kDa, estimated by an SDS-PAGE and AKTA system. The optimum temperature and pH for enzyme activity were around 40°C and pH 8.0, respectively. The enzyme was strongly inhibited by phenyl-methylsulfonyl fluoride, a serine protease inhibitor, and was thermostable until 65°C for 1 h. We then evaluated the enzyme's potential for degradation of Type I and Type V collagens for producing peptides with antifungal activity. Our results revealed that the cleavage of Type V collagen yielded more effective peptides than Type I, inhibiting growth of Aspergillus terreus, Aspergillus japonicus and Aspergillus parasiticus. Both groups of peptides (Type I and Type V) were identified by SDS-PAGE. To conclude, the thermostable collagenase we purified in this study has various potentially useful applications in the fields of biochemistry, biotechnology and biomedical sciences.


Assuntos
Aspergillus/metabolismo , Biotecnologia/métodos , Colagenases/isolamento & purificação , Colagenases/metabolismo , Plumas/metabolismo , Resíduos , Animais , Antifúngicos/farmacologia , Galinhas , Colagenases/farmacologia , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Inibidores de Metaloproteinases de Matriz/farmacologia , Peso Molecular , Fragmentos de Peptídeos/farmacologia , Temperatura , Inibidores da Tripsina/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 42(10): 1825-1829, 2017 May.
Artigo em Zh | MEDLINE | ID: mdl-29090538

RESUMO

Hops, the female inflorescences of the hop plant (Humulus lupulus), are widely used in the brewing industry to add bitterness and aroma to beer. Combining with the relevant literature, the chemical composition(resinae, volatile oil, polyphenol and polysaccharide) in hops and their pharmacological effects are reviewed in this paper so as to present some sights for further application research and development.


Assuntos
Humulus/química , Preparações de Plantas/farmacologia , Flores/química , Óleos de Plantas/química , Polifenóis/química , Polissacarídeos/química , Resinas Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA