Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 566: 67-74, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34119827

RESUMO

Our previous studies have initially identified HJURP, which encodes a Holliday junction recognizing protein, as a hepatocellular carcinoma (HCC) susceptibility gene. In this report, we showed that the HJURP is highly expressed in HCC tissues compared to adjacent normal tissues. Overexpression of HJURP in HCC tissues is mainly due to the hypomethylation of HJURP promoter region. Clinically, high expression of HJURP is significantly associated with poor overall survival and disease-free survival of patients with HCC, as well as in multiple other types of cancer. Gain- and loss-of functional studies demonstrated that HJURP promotes HCC cell proliferation, clone formation, migration and invasion. Additionally, HJURP enhances HCC tumorigenesis via reducing G0/G1 arrest and apoptosis. Mechanistically, by gene set enrichment analysis (GSEA) analysis, HJURP was identified as a modulator involved in CENPA-mediated centromere maintenance. Our results provide evidence of HJURP as an important oncogene that promotes HCC progression, and the HJURP pathway may be a potential target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Regulação para Cima
2.
Front Oncol ; 13: 1238310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771430

RESUMO

Background: Gastric cancer (GC) is one of the most common causes of cancer-related death. Drug resistance in chemotherapy often occurs in patients with GC, leading to tumor recurrence and poor survival. DNA methylation is closely related to the development of cancer. Methods: To investigate the role of DNA methylation in chemotherapy resistance in GC patients, we conducted a comprehensive analysis using DNA methylation data and survival information obtained from The Cancer Genome Atlas. Univariate Cox analysis was performed to screen for differential DNA methylation of chemotherapy response in patients who did and did not receive chemotherapy. Multivariate Cox analysis was then performed to identify the independent prognostic genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to explore the biological function of the signature genes. Results: Patients receiving adjuvant chemotherapy for GC survived longer. 308 differentially methylated genes were demonstrated to be associated with prognosis. Six genes were optimally chosed for establisehing the risk model, including C6orf222, CCNL1, CREBZF, GCKR, TFCP2, and VIPR2. It was constructed based on the DNA methylation levels of these six genes: risk score = 0.47123374*C6orf222 + 9.53554803*CCNL1 + 10.40234138* CREBZF + 0.07611856* GCKR + 18.87661557*TFCP2 - 0.46396254* VIPR2. According to the risk score, patients receiving chemotherapy were divided into high- and low-risk groups, and the prognosis of the two groups was compared. The high-risk group had a shorter survival; however, this association was not present in patients without chemotherapy. The accuracy and predictive efficacy of the risk score in predicting the 1-, 3-, and 5-year survival of patients was evaluated with the receiver operating characteristic curve. In patients receiving chemotherapy, the area under the curve of the risk score for 1-, 3-, and 5-year survival was 0.841, 0.72, and 0.734, respectively. In patients who did not receive chemotherapy, the area under the curve was 0.406, 0.585, and 0.585, respectively. A nomogram model was constructed based on the risk score and clinical indicators. The model showed good consistency in the predicted probabilities and actual probabilities. Gene Ontology functional enrichment of these candidate methylated genes showed the following molecular functions: RNA binding, protein binding, mRNA binding, and nucleic acid binding; that they were mediated mainly through the following cell components: nuclear speck, nucleoplasm, nucleus, catalytic step 2 spliceosome, and the transcription factor AP-1 complex; and that they were involved in the following biological processes: mRNA processing, mRNA splicing, and RNA polymerase II promoter transcription. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment results revealed that the signaling pathways mainly enriched were transcriptional misregulation in cancer, spliceosome, and the IL-17 signaling pathway. Conclusion: Our work identifies a six DNA methylated expression signature as a promising biomarker of chemo-resistance in GC, which provides new insights into the development of new strategies to overcome chemo-resistance in GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA