Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Trends Genet ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704304

RESUMO

It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.

2.
Mol Biol Evol ; 38(12): 5528-5538, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34398232

RESUMO

It has been suggested that gene duplication and polyploidization create opportunities for the evolution of novel characters. However, the connections between the effects of polyploidization and morphological novelties have rarely been examined. In this study, we investigated whether petal pigmentation patterning in an allotetraploid Clarkia gracilis has evolved as a result of polyploidization. Clarkia gracilis is thought to be derived through a recent polyploidization event with two diploid species, C. amoena huntiana and an extinct species that is closely related to C. lassenensis. We reconstructed phylogenetic relationships of the R2R3-MYBs (the regulators of petal pigmentation) from two subspecies of C. gracilis and the two purported progenitors, C. a. huntiana and C. lassenensis. The gene tree reveals that these R2R3-MYB genes have arisen through duplications that occurred before the divergence of the two progenitor species, that is, before polyploidization. After polyploidization and subsequent gene loss, only one of the two orthologous copies inherited from the progenitors was retained in the polyploid, turning it to diploid inheritance. We examined evolutionary changes in these R2R3-MYBs and in their expression, which reveals that the changes affecting patterning (including expression domain contraction, loss-of-function mutation, cis-regulatory mutation) occurred after polyploidization within the C. gracilis lineages. Our results thus suggest that polyploidization itself is not necessary in producing novel petal color patterns. By contrast, duplications of R2R3-MYB genes in the common ancestor of the two progenitors have apparently facilitated diversification of petal pigmentation patterns.


Assuntos
Clarkia , Onagraceae , Antocianinas/genética , Clarkia/anatomia & histologia , Clarkia/genética , Clarkia/metabolismo , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Onagraceae/metabolismo , Filogenia , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
New Phytol ; 229(2): 1147-1162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880946

RESUMO

Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background. We used transcriptome analysis, gene expression assays, cosegregation in F2 plants and functional tests to identify the gene(s) involved in petal coloration in Clarkia gracilis ssp. sonomensis. We identified an R2R3-MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region ('cup') in the petal of C. gracilis ssp. sonomensis. A functional mutation in CgsMYB12 creates a white cup on a pink petal background. Additionally, we found that two R2R3-MYB genes (CgsMYB6 and CgsMYB11) are also involved in petal background pigmentation. Each of these three R2R3-MYB genes exhibits a different spatiotemporal expression pattern. The functionality of these R2R3-MYB genes was confirmed through stable transformation of Arabidopsis. Distinct spatial patterns of R2R3-MYB expression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning in C. gracilis ssp. sonomensis.


Assuntos
Clarkia , Onagraceae , Antocianinas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Onagraceae/metabolismo , Filogenia , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Anim Ecol ; 84(3): 829-839, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582865

RESUMO

Niche evolution underpins the generation and maintenance of biological diversity, but niche conservatism, in which niches remain little changed over time in closely related taxa, and the role of ecology in niche evolution are continually debated. To test whether climate niches are conserved in two closely related passerines in East Asia - the vinous-throated (Paradoxornis webbianus) and ashy-throated (P. alphonsianus) parrotbills - we established their potential allopatric and sympatric regions using ecological niche models and compared differences in their climate niches using niche overlap indices in background tests and multivariate statistical analyses. We also used polymorphism data on 44 nuclear genes to infer their divergence demography. We found that these two parrotbills occupy different climate niches, in both their allopatric and potential sympatric regions. Because the potential sympatric region is the area predicted to be suitable for both parrotbills based on the ecological niche models, it can serve as a natural common garden. Therefore, their observed niche differences in this potential sympatry were not simply rendered by phenotypic plasticity and probably had a genetic basis. Our genetic analyses revealed that the two parrotbills are not evolutionarily independent for the most recent part of their divergence history. The two parrotbills diverged c. 856,000 years ago and have had substantial gene flow since a presumed secondary contact c. 290,000 years ago. This study provides an empirical case demonstrating that climate niches may not be homogenized in nascent species in spite of substantial, ongoing gene flow, which in turn suggests a role for ecology in promoting and maintaining diversification among incipient species.


Assuntos
Clima , Fluxo Gênico , Passeriformes/genética , Animais , Ecossistema , Feminino , Especiação Genética , Masculino , Dados de Sequência Molecular , Passeriformes/classificação , Filogenia
5.
Mol Biol Evol ; 30(11): 2519-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23955517

RESUMO

When geographic isolation drives speciation, concurrent termination of gene flow among genomic regions will occur immediately after the formation of the barrier between diverging populations. Alternatively, if speciation is driven by ecologically divergent selection, gene flow of selectively neutral genomic regions may go on between diverging populations until the completion of reproductive isolation. It may also lead to an unsynchronized termination of gene flow between genomic regions with different roles in the speciation process. Here, we developed a novel Approximate Bayesian Computation pipeline to infer the geographic mode of speciation by testing for a lack of postdivergence gene flow and a concurrent termination of gene flow in autosomal and sex-linked markers jointly. We applied this approach to infer the geographic mode of speciation for two allopatric highland rosefinches, the vinaceous rosefinch Carpodacus vinaceus and the Taiwan rosefinch C. formosanus from DNA polymorphisms of both autosomal and Z-linked loci. Our results suggest that the two rosefinch species diverged allopatrically approximately 0.5 Ma. Our approach allowed us further to infer that female effective population sizes are about five times larger than those of males, an estimate potentially useful when comparing the intensity of sexual selection across species.


Assuntos
Tentilhões/classificação , Tentilhões/genética , Especiação Genética , Variação Genética , Cromossomos Sexuais/genética , Animais , Teorema de Bayes , Biologia Computacional , Feminino , Fluxo Gênico , Loci Gênicos , Mapeamento Geográfico , Masculino , Modelos Genéticos , Polimorfismo Genético , Densidade Demográfica , Seleção Genética
6.
Sci Rep ; 14(1): 5364, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438787

RESUMO

Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.


Assuntos
Genes myb , Liliaceae , Humanos , Antocianinas/genética , Polimorfismo Genético , Deriva Genética
7.
BMC Genomics ; 13: 149, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22530590

RESUMO

BACKGROUND: Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. RESULTS: Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. CONCLUSIONS: Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea.


Assuntos
Sequência de Bases/genética , Perfilação da Expressão Gênica/veterinária , Aves Canoras/genética , Transcriptoma/genética , Adaptação Biológica/genética , Animais , Encéfalo/citologia , Marcadores Genéticos , Genoma , Fígado/citologia , Repetições de Microssatélites , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/veterinária , Análise de Sequência de RNA/veterinária
8.
Mol Biol Evol ; 28(1): 473-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20705906

RESUMO

Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10(-8)) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.


Assuntos
Aves/genética , Efeito Fundador , Especiação Genética , Genética Populacional , Animais , Australásia , Evolução Biológica , Ásia Oriental , Fluxo Gênico , Polimorfismo Genético , Recombinação Genética
9.
Mol Phylogenet Evol ; 61(1): 192-202, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21704175

RESUMO

The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.


Assuntos
Aves/classificação , Aves/genética , Filogenia , Animais , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Mitocôndrias/genética , Modelos Genéticos , Análise de Sequência de DNA
10.
Mol Ecol ; 19(3): 494-507, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20070521

RESUMO

Allopatry is conventionally considered the geographical mode of speciation for continental island organisms. However, strictly allopatric speciation models that assume the lack of postdivergence gene flow seem oversimplified given the recurrence of land bridges during glacial periods since the late Pliocene. Here, to evaluate whether a continental island endemic, the Taiwan hwamei (Leucodioptron taewanus, Passeriformes Timaliidae) speciated in strict allopatry, we used weighted-regression-based approximate Bayesian computation (ABC) to analyse the genetic polymorphism of 18 neutral nuclear loci (total length: 8500 bp) in Taiwan hwamei and its continental sister species, the Chinese hwamei (L. canorum canorum). The nonallopatry model was found to fit better with observed genetic polymorphism of the two hwamei species (posterior possibility = 0.82). We also recovered unambiguous signals of nontrivial bidirectional postdivergence gene flow (N(e)m >> 1) between Chinese hwamei and Taiwan hwamei until 0.5 Ma. Divergence time was estimated to be 3.5 to 2 million years earlier than that estimated from mitochondrial cytochrome b sequences. Finally, using the inferred nonallopatry model to simulate genetic variation at 24 nuclear genes examined showed that the adiponectin receptor 1 gene may be under divergent adaptation. Our findings imply that the role of geographical barrier may be less prominent for the speciation of continental island endemics, and suggest a shift in speciation studies from simply correlating geographical barrier and genetic divergence to examining factors that facilitate and maintain divergence, e.g. differential selection and sexual selection, especially in the face of interpopulation gene flow.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Passeriformes/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , China , Geografia , Haplótipos , Funções Verossimilhança , Modelos Genéticos , Polimorfismo Genético , Análise de Regressão , Análise de Sequência de DNA , Taiwan
11.
Mol Ecol ; 17(23): 5008-22, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120988

RESUMO

The climatic oscillations of the last glacial period have had profound influences on the demography and levels of genetic diversity of extant species. Molecular evidence of glacial effects on temperate species has been well documented, whereas little is known regarding that on subtropical species. Here we present analyses based on partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (1052 bp) and genotypes at 15 microsatellite loci to investigate the historical demography, population structure and ongoing gene flow of an undescribed fig-pollinating wasp (Ceratosolen sp. 1) of Ficus septica in subtropical Taiwan. Reconstructed historical demography based on the coalescent tree of COI sequences suggests that C. sp. 1 has undergone a drastic population expansion which was tightly coupled with climatic changes since the last glacial maximum (LGM). The magnitude of the population size change was approximately 500-fold, indicating that the population of this wasp and its host was likely highly compressed during the last glacial period. The lack of significant population differentiation (F(ST) < 0.02, for all pairwise F(ST) values) may be due to rapid postglacial expansion facilitated by long-distance dispersal, although a low frequency of first-generation migrants was detected. Our results clearly demonstrate how recent climatic changes since the LGM and dispersal ability have jointly shaped the genetic composition of a subtropical fig-pollinating wasp.


Assuntos
Evolução Molecular , Genética Populacional , Polimorfismo Genético , Vespas/genética , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ficus/fisiologia , Fluxo Gênico , Genes Mitocondriais , Genótipo , Endogamia , Repetições de Microssatélites , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA , Taiwan
12.
PLoS One ; 8(2): e56301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437111

RESUMO

The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.


Assuntos
Columbidae/genética , Extinção Biológica , Genoma Mitocondrial/genética , Análise de Sequência de DNA/métodos , Animais , Pareamento de Bases/genética , Sequência de Bases , DNA/genética , Contaminação por DNA , Frequência do Gene/genética , Metagenoma/genética , Mudanças Depois da Morte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA