Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 41(15): e110218, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775648

RESUMO

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Proteínas de Transporte/metabolismo , Proteínas com Domínio LIM/metabolismo , Neoplasias Hepáticas , gama-Butirobetaína Dioxigenase/metabolismo , Carcinoma Hepatocelular/metabolismo , Carnitina , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
Int J Biol Sci ; 20(1): 137-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164172

RESUMO

Metastasis and limited benefits of immune checkpoint blockade are two obstacles to the battle against colorectal cancer (CRC). CD73, encoded by the gene 5'-Nucleotidase Ecto (NT5E), is a major enzyme that generates extracellular adenosine. However, whether CD73 affects cancer progression and immune response in CRC remains unclear. Here, the clinical significance of CD73 was assessed in human CRC specimens using immunohistochemistry and bioinformatic analyses. We demonstrated that CD73 is elevated in CRC tissues, particularly in those with metastasis, and correlates with poor prognosis. Gain- and loss-of-function experiments demonstrate that tumor CD73 supports tumor progression and impairs the viability and effector functions of CD8+ T cells. Targeting CD73 on CRC cells reduces their malignant phenotypes and improves the anti-cancer response of CD8+ T cells in the tumor microenvironment (TME). Moreover, the combination of CD73 blockade and PD-1 inhibitors exhibited enhanced anti-cancer effects when compared to a single-agent treatment. Thus, CD73 may be a promising target in the treatment of CRC.


Assuntos
Adenosina , Neoplasias Colorretais , Humanos , 5'-Nucleotidase/genética , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Neoplasias Colorretais/patologia , Microambiente Tumoral
3.
Cell Death Discov ; 10(1): 228, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740771

RESUMO

Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.

4.
Front Cell Dev Biol ; 10: 954214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120577

RESUMO

Background: N6-methyladenosine (m6A) modification is a dynamic and reversible post-transcriptional RNA modification prevalent in eukaryotic cells. YT521-B homology domain family 2 (YTHDF2) has been identified as a member of m6A reader protein involving in many vital biological processes, whereas its role and functional mechanisms in cancers remain unclear. Methods: Bioinformatics analyses were performed on multiple databases including GTEx, TCGA, GEO and Cbioportal to explore the connection between YTHDF2 expression and its genomic changes including tumor mutation burden, microsatellite instability and mismatch repair in 33 different cancer types. We also investigated the association of YTHDF2 expression with prognosis, immune infiltration, tumor microenvironment, immune checkpoints and chemokines. Besides, the correlation of YTHDF2 expression with copy number variation and promoter methylation was also studied in tumors compared with normal tissues. At last, we analyzed the protein-protein interacting network and related genes of YTHDF2 to enrich its potential functional mechanism in tumor development and progression. Real-time qPCR was used to verify the expression of YTHDF2-related genes in colorectal cancer cells, and immunohistochemical staining was adopted to verify immune infiltration in tissue sections from 51 hepatocellular carcinoma patients. Results: YTHDF2 was overexpressed in a majority of tumor types and associated with their poor overall survival, progression-free interval, and disease-specific survival. The correlation of YTHDF2 expression with tumor mutation burden, microsatellite instability and mismatch repair was also detected in most of the tumor types. Moreover, YTHDF2 might participate in the immune regulation through influencing the expression of immune checkpoint genes and the infiltration of immunocytes in tumor microenvironment. Notably, we demonstrated a positive correlation between YTHDF2 expression and the infiltration of CD8+ T cells and macrophages in many tumors, and it was verified in 51 clinic hepatocellular carcinoma tissues. In addition, the involvement of YTHDF2 in "Spliceosome" and "RNA degradation" were two potential functional mechanisms underlying its influence on tumor progression. The regulation of YTHDF2 on predicted genes has been verified in CRC cells. Conclusion: YTHDF2 might be a new therapeutic target and a potential biomarker of cancer immune evasion and poor prognosis.

5.
J Exp Clin Cancer Res ; 40(1): 297, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551797

RESUMO

BACKGROUND: Chemoresistance is the major cause of chemotherapy failure in patients with colorectal cancer (CRC). Protein tyrosine kinase 6 (PTK6) is aberrantly overexpressed in clinical CRC tissues undergoing chemotherapy. We studied if PTK6 contributed to the chemoresistance of CRC in human and mice. METHODS: We obtained tissue samples from patients with CRC and measured the expression of PTK6 by immunohistochemistry. Gain- and loss-of-function assays were performed to study the biological functions of PTK6. We constructed the FLAG-tagged wild type (WT), kinase-dead, and inhibition-defective recombinant mutants of PTK6 to study the effect phosphorylated activation of PTK6 played on CRC cell stemness and chemoresistance. We used small molecule inhibitor XMU-MP-2 to test the influence of PTK6 on sensitivity of CRC cells to 5-FU/L-OHP in both nude mouse and patient-derived xenograft (PDX) animal models. RESULTS: PTK6 is overexpressed in CRC tissues and plays a stimulatory role in the proliferation and chemoresistance of CRC cells both in vitro and in vivo. PTK6, especially the phosphorylated PTK6, can promote the stemness of CRC cells through interacting with JAK2 and phosphorylating it to activate the JAK2/STAT3 signaling. Pharmacological inhibition of PTK6 using XMU-MP-2 effectively reduces the stemness property of CRC cells and improves its chemosensitivity to 5-FU/L-OHP in both nude mice subcutaneously implanted tumor model and PDX model constructed with NOD-SCID mice. CONCLUSIONS: PTK6 interacts with JAK2 and phosphorylates it to activate JAK2/STAT3 signaling to promote the stemness and chemoresistance of CRC cells. Pharmacological inhibition of PTK6 by small molecule inhibitor dramatically enhances the sensitivity to chemotherapy in nude mice and PDX models.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Theranostics ; 9(4): 1001-1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867812

RESUMO

Angiogenesis is a fundamental process that involves in tumor progression and metastasis. Vascular endothelial growth factor (VEGF) family and their receptors are identified as the most prominent regulators of angiogenesis. However, the clinical efficacy of anti-VEGF/VEGFR therapy is not ideal, prompting the needs to further understand mechanisms behind tumor angiogenesis. Here, we found that Dickkopf associated protein 2 (DKK2), a secretory protein highly expressed in metastatic colorectal cancer tissues, could stimulate angiogenesis via a classic VEGF/VEGFR independent pathway. Methods: DKK2 was screened out from microarray data analyzing gene expression profiles of eight pairs of non-metastatic and metastatic human colorectal cancer (CRC) tissues. Immunofluorescence histochemical staining (IHC) was used to detect the expression of DKK2 and angiogenesis in CRC tissues. Chicken chorioallantoic membrane (CAM) assay and Human umbilical vein endothelial cells (HUVEC) tubule formation assay was used for in vitro and in vivo angiogenesis study, respectively. Lactate and glucose concentration in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter assay was used to verify the interaction between miR-493-5p and the 3'UTR of DKK2. Results: DKK2 could stimulate angiogenesis via accelerating the aerobic glycolysis of CRC cells, through which lactate is produced from glucose and accumulated in tumor microenvironment. Lactate functions as the final executor of DDK2 to stimulate tube formation of endothelial cells, and blockage of lactate secretion by lactate transporter (MCT) inhibitors dramatically neutralize the progression and metastasis of CRC both in vitro and in vivo. DKK2 could cooperate with lipoprotein receptor-related protein 6, which is required for glucose uptake, and activated the downstream mTOR signal pathway to accelerate lactate secretion. In addition, the expression of DKK2 is switched on via the demethylation of miR-493-5p, which allows the dissociated of miR-493-5p from the 3'-UTRs of DKK2 and initiates its stimulatory role on CRC progression in an autocrine or paracrine manner. Conclusion: DKK2 promotes tumor metastasis and angiogenesis through a novel VEGF-independent, but energy metabolism related pathway. DKK2 might be a potential anti-angiogenic target in clinical treatment for the advanced CRC patients.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Glicólise/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica , Aerobiose , Perfilação da Expressão Gênica , Histocitoquímica , Humanos , Análise em Microsséries , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA