Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Opt Express ; 31(3): 4029-4040, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785380

RESUMO

We demonstrate visualized microwire sensors based on fluorescence indication for detecting the concentrations of the aqueous solutions. The single Rhodamine (RhB) doped polymer microwires (PMWs) which are excited by the waveguiding excitation method are used as the sensory area. According to the fluorescent microimages of the PMWs, stable periodic oscillations could be observed in the RhB-doped PMWs. The fluorescent period which is dependent on the concentration is further analyzed by image processing and information extraction algorithms. Corresponding to a 1.0% change, the period length change of the visualized sensor reaches ∼380 nm, ∼270 nm, and ∼300 nm in NaCl, KCl, and sucrose solutions, respectively. The dection limits of the three solutions are estimated to be around 1.5 × 10-4%. The dye-doped PMW sensors by fluorescence indication and image analysis proposed here realize the direct visualized detection in concentration sensing, making it possible to avoid the challenges of stability and weak signal detection and offer a potentially stable and cost-effective approach for micro/nanofiber sensor application.

2.
Opt Lett ; 46(19): 4840-4843, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598213

RESUMO

We distinctly reveal the difference in the exciton generation processes in phosphorescent organic light-emitting devices with an exciplex-type co-host and a single host. Excitons in the co-host consisting of 4,4,4-tris(N-carbazolyl)-triphenylamine and 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene are created via efficient energy transfer from the exciplex to the phosphorescent dopant. In contrast, excitons in the single host of 4,4,4-tris(N-carbazolyl)-triphenylamine are formed by the combination of holes and electrons trapped by the phosphorescent dopants. The optimized device utilizing the co-host system exhibits highly superior performance relative to the single-host device. The maximum external quantum efficiency and maximum luminance are 14.88% and 90,700cd/m2 for the co-host device, being 1.6 times and 3.6 times the maximum external efficiency and maximum luminance for the single-host device, respectively. Significantly, the critical current density, evaluating the device efficiency roll-off characteristic, is as high as 327.8mA/cm2, which is highly superior to 120.8mA/cm2 for the single-host device, indicating the notable alleviation in efficiency roll-off for the co-host device. The significant improvement in device performance is attributed to eliminating the exciton quenching resulting from the captured holes and the efficient energy transfer from the exciplex-type co-host to the phosphorescent emitter incurred by the reverse intersystem crossing process.

3.
Opt Express ; 28(21): 31954-31966, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115159

RESUMO

Circular dichroism spectroscopy is frequently used to characterize the chiral biomolecules by measuring the absorption spectra contrast between the left-handed circularly polarized light and the right-handed circularly polarized light. Compared with biomolecules, chiral metal plasmonic nanostructures also produce a strong circular dichroism response in the range of near-infrared. However, due to the large damping rate, the non-adjustable resonant frequency of the conventional metals, the applications of chiral metal plasmonic nanostructures in the fields of photoelectric detection and chemical and biochemical sensing are restricted. Here, we present a chiral graphene plasmonic Archimedes' spiral nanostructure that displays a significant circular dichroism response under the excitation of two polarizations of circularly polarized light. By manipulating the material and geometric parameters of the Archimedes' spiral, the stronger circular dichroism responses and modulation of the resonant wavelength are achieved. The optimized plasmonic nanostructure has outstanding refractive index sensing performance, where the sensitivity and figure of merit reach 7000nm/RIU and 68.75, respectively. Our proposed chiral graphene plasmonic Archimedes' spiral nanostructure might find potential applications in the fields of optical detection and high performance of index sensing.

4.
Opt Express ; 28(25): 37566-37576, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379589

RESUMO

The response of the optical microfiber sensor has a big difference due to the slight change in fiber structure, which greatly reduces the reliability of microfiber sensors and limits its practical applications. To avoid the nonlinear influences of microfiber deformation and individual differences on sensing performance, a backpropagation neural network (BPNN) is proposed for concentration prediction based on biconical microfiber (BMF) sensors. Microfiber diameter, cone angle, and relative intensity are the key input parameters for detecting the concentration of chlorophyll-a (from ∼0.03 mg/g to ∼0.10 mg/g). Hundreds of relative intensity-concentration data pairs acquired from 32 BMF sensors are used for the network training. The prediction ability of the model is evaluated by the root-mean-square error (RMSE) and the fitness value (F). The prediction performance of BPNN is compared with the traditional linear-fitting line method. After training, BPNN could adapt to the BMF sensors with different structural parameters and predict the nonlinear response caused by the small structural changes of microfiber. The concentration prediction given by BPNN is much closer to the actual measured value than the one obtained by the linear fitting curve (RMSE 1.84×10-3 mg/g vs. 4.6×10-3 mg/g). The numbers of training data and hidden layers of the BPNN are discussed respectively. The prediction results indicate that the one-hidden-layer network trained by more training data provides the best performance (RMSE and fitness values are 1.63×10-3 mg/g and 97.91%, respectively) in our experiments. With the help of BPNN, the performance of the BMF sensor is acceptable to the geometric deformation and fabrication error of microfiber, which provides an opportunity for the practical application of sensors based on micro/nanofibers.

5.
Opt Express ; 26(14): 18182-18189, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114098

RESUMO

In this paper, we present a digital laser for on-demand modes with polarization control based on a single intra-cavity spatial light modulator (SLM). We employ a phase-only SLM as the back reflector in a dual-cavity resonator. We prove that we can digitally control and switch lasing modes with desired linear polarization at video rates. Moreover, we experimentally generate vector beams based on the selection and coherent summation of two orthogonally polarized Hermite-Gaussian (HG) beams inside the resonator.

6.
Opt Express ; 26(2): 1145-1160, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401992

RESUMO

A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

7.
Phys Chem Chem Phys ; 20(24): 16695-16703, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29877522

RESUMO

In the mid-infrared and terahertz (THz) regime, graphene supports tunable surface plasmon resonance (SPR) by controlling the chemical potential, which promotes light-matter interaction at the selected wavelength, showing exceptional promise for optoelectronic applications. In this article, we show that the electromagnetic (EM) response of graphene oligomers can be substantially modified by the modification of the local chemical potential, strengthening or reducing the intrinsic plasmonic modes. The effect mechanism is corroborated by a graphene nanocluster composed of 13 nanodisks with D6h symmetry; by transforming to D3h symmetry, the effect mechanism was retained and more available plasmonic resonance modes appeared. The intriguing properties open a new way to design nanodevices made of graphene oligomers with highly efficient photoresponse enhancement and tunable spectral selectivity for highly accurate photodetection.

8.
Appl Opt ; 57(16): 4381-4385, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877382

RESUMO

We demonstrate, to the best of our knowledge, a new kind of laser, called a partially coherent digital laser, producing nonuniformly correlated partially coherent light beams by "playing a video" inside the cavity directly. In this laser, a spatial light modulator (SLM) with dynamic phase modulation acts as a cavity mirror. The coherence degree distribution of the output beams can be controlled simply by varying the waists of the computer-generated holograms on the SLM. The experimental results show that the coherence degree between two points on the observation plane is not only dependent on the distance between them, but also on the positions that are observed across the beam.

9.
Opt Express ; 25(7): 8440-8449, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380955

RESUMO

The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.

10.
Opt Express ; 25(19): 22587-22594, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041566

RESUMO

A two-dimensional graphene plasmonic crystal composed of periodically arranged graphene nanodisks is proposed. We show that the band topology effect due to inversion symmetry broken in the proposed plasmonic crystals is obtained by tuning the chemical potential of graphene nanodisks. Utilizing this kind of plasmonic crystal, we constructed N-shaped channels and realized topologically edged transmission within the band gap. Furthermore, topologically protected exterior boundary propagation, which is immune to backscattering, was also achieved by modifying the chemical potential of graphene nanodisks. The proposed graphene plasmonic crystals with ultracompact size are subject only to intrinsic material loss, which may find potential applications in the fields of topological plasmonics and high density nanophotonic integrated systems.

11.
Phys Chem Chem Phys ; 19(22): 14671-14679, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537636

RESUMO

In this paper, we propose a plasmonic tetramer composed of coupled graphene nanodisks. The transformation from the isolated to the collective modes of the proposed structure is investigated by analysing the whispering-gallery modes and extinction spectra with various inter-nanodisk gap distances. In addition, the effect of introducing a central nanodisk into the tetramer on the extinction spectra is explored, which leads to Fano resonance. Furthermore, the refractive index sensing properties of the proposed graphene plasmonic oligomer have been demonstrated. The proposed nanostructures might pave the road toward the application of graphene plasmonic oligomers in fields such as nanophotonics, and chemical or biochemical sensing.

12.
Sensors (Basel) ; 17(1)2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28054951

RESUMO

An improved temperature-insensitive optical voltage sensor (OVS) with a reciprocal dual-crystal sensing method is proposed. The inducing principle of OVS reciprocity degradation is expounded by taking the different temperature fields of two crystals and the axis-errors of optical components into consideration. The key parameters pertaining to the system reciprocity degeneration in the dual-crystal sensing unit are investigated in order to optimize the optical sensing model based on the Maxwell's electromagnetic theory. The influencing principle of axis-angle errors on the system nonlinearity in the Pockels phase transfer unit is analyzed. Moreover, a novel axis-angle compensation method is proposed to improve the OVS measurement precision according to the simulation results. The experiment results show that the measurement precision of OVS is superior to ±0.2% in the temperature range from -40 °C to +60 °C, which demonstrates the excellent temperature stability of the designed voltage sensing system.

13.
Opt Express ; 24(19): 21587-96, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661897

RESUMO

We generate a stochastic electromagnetic beam (SEB) with complete controllable coherence, that is, the coherence degree can be controlled independently along two mutually perpendicular directions. We control the coherence of the SEB by adjusting the phase modulation magnitude applied onto two crossed phase only spatial light modulators. We measure the beam's coherence properties using Young's interference experiment, as well as the beam propagation factor. It is shown that the experimental results are consistent with our theoretical predictions.

14.
Clin Immunol ; 158(1): 29-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762520

RESUMO

Newborn screening (NBS) for severe combined immunodeficiency (SCID) identifies affected infants before the onset of life-threatening infections, permitting optimal treatment. Navajo Native Americans have a founder mutation in the DNA repair enzyme Artemis, resulting in frequent Artemis SCID (SCID-A). A pilot study at 2 Navajo hospitals assessed the feasibility of SCID NBS in this population. Dried blood spots from 1800 infants were assayed by PCR for T-cell receptor excision circles (TRECs), a biomarker for naïve T cells. Starting in February 2012, TREC testing transitioned to standard care throughout the Navajo Area Indian Health Service, and a total of 7900 infants were screened through July 2014. One infant had low TRECs and was diagnosed with non-SCID T lymphopenia, while 4 had undetectable TRECs due to SCID-A, all of whom were referred for hematopoietic cell transplantation. This report establishes the incidence of SCID-A and demonstrates effectiveness of TREC NBS in the Navajo.


Assuntos
Indígenas Norte-Americanos/genética , Linfopenia/diagnóstico , Proteínas Nucleares/genética , Imunodeficiência Combinada Severa/diagnóstico , Proteínas de Ligação a DNA , Endonucleases , Estudos de Viabilidade , Humanos , Recém-Nascido , Linfopenia/genética , Triagem Neonatal , Projetos Piloto , Reação em Cadeia da Polimerase , Imunodeficiência Combinada Severa/genética
15.
J Opt Soc Am A Opt Image Sci Vis ; 32(9): 1717-22, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367441

RESUMO

Based on the Richards-Wolf vector diffraction theory, we have derived the expressions for the electric field and the propagation velocity of femtosecond radially polarized light pulses focused by a high numerical aperture (NA) objective. The intensity distribution in the focus, wavefront spacings, and propagation velocity variation near the focus are investigated in detail by using numerical calculations. It is found that the propagation velocity of focused ultrashort light pulses changes dramatically near the focus, and the propagation velocity of the focused laser pulse is strongly dependent on the NA of an objective and the refractive index of media. Moreover, the usual propagation velocity of light pulses, as expected, decreases as the refractive index of media increases.

16.
JAMA ; 312(7): 729-38, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25138334

RESUMO

IMPORTANCE: Newborn screening for severe combined immunodeficiency (SCID) using assays to detect T-cell receptor excision circles (TRECs) began in Wisconsin in 2008, and SCID was added to the national recommended uniform panel for newborn screened disorders in 2010. Currently 23 states, the District of Columbia, and the Navajo Nation conduct population-wide newborn screening for SCID. The incidence of SCID is estimated at 1 in 100,000 births. OBJECTIVES: To present data from a spectrum of SCID newborn screening programs, establish population-based incidence for SCID and other conditions with T-cell lymphopenia, and document early institution of effective treatments. DESIGN: Epidemiological and retrospective observational study. SETTING: Representatives in states conducting SCID newborn screening were invited to submit their SCID screening algorithms, test performance data, and deidentified clinical and laboratory information regarding infants screened and cases with nonnormal results. Infants born from the start of each participating program from January 2008 through the most recent evaluable date prior to July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health Service contributed data from 3,030,083 newborns screened with a TREC test. MAIN OUTCOMES AND MEASURES: Infants with SCID and other diagnoses of T-cell lymphopenia were classified. Incidence and, where possible, etiologies were determined. Interventions and survival were tracked. RESULTS: Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome, affecting 1 in 58,000 infants (95% CI, 1/46,000-1/80,000). Survival of SCID-affected infants through their diagnosis and immune reconstitution was 87% (45/52), 92% (45/49) for infants who received transplantation, enzyme replacement, and/or gene therapy. Additional interventions for SCID and non-SCID T-cell lymphopenia included immunoglobulin infusions, preventive antibiotics, and avoidance of live vaccines. Variations in definitions and follow-up practices influenced the rates of detection of non-SCID T-cell lymphopenia. CONCLUSIONS AND RELEVANCE: Newborn screening in 11 programs in the United States identified SCID in 1 in 58,000 infants, with high survival. The usefulness of detection of non-SCID T-cell lymphopenias by the same screening remains to be determined.


Assuntos
Linfopenia/diagnóstico , Triagem Neonatal/métodos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/epidemiologia , Feminino , Humanos , Incidência , Recém-Nascido , Masculino , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Estudos Retrospectivos , Imunodeficiência Combinada Severa/terapia , Análise de Sobrevida , Linfócitos T/imunologia , Estados Unidos
17.
Front Pharmacol ; 15: 1377370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818376

RESUMO

Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.

18.
Front Oncol ; 14: 1322680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562177

RESUMO

Purpose: To assess the prognostic significance of ß2-microglobulin decline index (ß2M DI) in multiple myeloma (MM). Methods: 150 MM patients diagnosed with MM were enrolled in this study. Cox proportional hazards model was used to analyze the uni- and multivariate prognosis in training cohort (n=105). A new combined prognostic model containing ß2M DI was built up based on the data in training cohort. The validation group was used to verify the model. Results: ß2M DI showed significant correlation with prognosis in both uni- and multivariate analyses and had a good correlation with complete response (CR) rate and deep remission rate. The ROC and calibration curves in validation cohort (n=45) indicated a good predictive performance of the new model. Based on the median risk score of the training group, we classified patients into high- and low- risk groups. In both training and validation groups, patients in the low-risk group had longer overall survival (OS) time than that in the high-risk group (p<0.05). Conclusion: ß2M DI is a good predictive index for predicting treatment response and survival time in MM patients. The prognostic model added with ß2M DI showed a better correlation with OS.

19.
Opt Lett ; 38(9): 1416-8, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632503

RESUMO

A photonic crystal ring resonator (PCRR) of air hole arrays is fabricated on a silicon-on-insulator wafer by using electron-beam lithography and inductively coupled plasma etching. The designed PCRR is modeled and its performance is simulated by the two-dimensional finite difference time domain method. The simulation results show that the PCRR has two resonant wavelengths, 1598 and 1606 nm, and their corresponding quality factors are 3994 and 4015, respectively. A sample of the PCRR structure is fabricated and tested by the established experimental setup. Compared with the simulation results, the experimental resonant wavelengths drift to some extent and the quality factors are reduced by about one order of magnitude. The fabrication error and irregularity are the main reasons for the above results, which can be further reduced by improving the process technology. In addition, one more resonant wavelength emerged for the PCRR sample, which can be attributed to the change of the coupling strength.

20.
Front Pharmacol ; 14: 1203125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608887

RESUMO

Background: One particular type of cellular death that is known as ferroptosis is caused by the excessive lipid peroxidation. It is a regulated form of cell death that can affect the response of the tumor cells. Currently, it is not known if the presence of this condition can affect the prognosis of patients with multiple myeloma (MM). Methods: In this study, we studied the expression differences and prognostic value of ferroptosis-related genes (FRGs) in MM, and established a ferroptosis risk scoring model. In order to improve the prediction accuracy and clinical applicability, a nomogram was also established. Through gene enrichment analysis, pathways closely related to high-risk groups were identified. We then explored the differences in risk stratification in drug sensitivity and immune patterns, and evaluated their value in prognostic prediction and treatment response. Lastly, we gathered MM cell lines and samples from patients to confirm the expression of marker FRGs using quantitative real-time PCR (qRT-PCR). Results: The ability to predict the survival of MM patients is a challenging issue. Through the use of a risk model derived from ferroptosis, we were able to develop a more accurate prediction of the disease's prognosis. They were then validated by a statistical analysis, which showed that the model is an independent factor in the prognosis of MM. Patients of high ferroptosis risk scores had a much worse chance of survival than those in the low-risk groups. The calibration and power of the nomogram were also strong. We noted that the link between the ferroptosis risk score and the clinical treatment was suggested by the FRG's significant correlation with the immune checkpoint genes and the medication sensitivity. We validated the predictive model using qRT-PCR. Conclusion: We demonstrated the association between FRGs and MM, and developed a new risk model for prognosis in MM patients. Our study sheds light on the potential clinical relevance of ferroptosis in MM and highlights its potential as a therapeutic target for patients with this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA