Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Am Chem Soc ; 145(32): 17805-17818, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531225

RESUMO

Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.

2.
J Chem Inf Model ; 63(23): 7382-7391, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38011026

RESUMO

The typical workflow in molecular dynamics (MD) analysis requires several separate tools, often resulting in a lack of synergy and interaction between the individual analysis steps. This article presents VIAMD, an application designed to address this issue by integrating a 3D visualization of molecular trajectories with flexible analysis components. VIAMD uses an interactive scripting interface, allowing for property definition and evaluation. The application provides context-aware suggestions and expression feedback through information and visualizations. The user-defined properties can be explored and analyzed through the various components. This enables correlation with spatial conformations, statistical analysis of distributions, and powerful aggregation of multidimensional properties such as spatial distribution functions. VIAMD has the potential to advance research in many scientific disciplines and is a promising solution for improving the workflow of MD visualization and analysis.


Assuntos
Simulação de Dinâmica Molecular , Software , Conformação Molecular , Interface Usuário-Computador
3.
J Phys Chem A ; 127(4): 938-945, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669091

RESUMO

We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. Comparison with quantum chemical spectral calculations suggests that the molecule assumes multiple stable conformations, mainly of two structure types. In the most stable conformation theoretically found, the N-terminus forms a C5 ring and the backbone resembles that of an 310-helix with two ß-turns. Additionally, the conformational preferences of pentaalanine have been evaluated using Born-Oppenheimer molecular dynamics, showing that a nonzero simulation time step causes a systematic frequency shift.

4.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37843059

RESUMO

As conducting polymers become increasingly important in electronic devices, understanding their charge transport is essential for material and device development. Various semi-empirical approaches have been used to describe temporal charge carrier dynamics in these materials, but there have yet to be any theoretical approaches utilizing ab initio molecular dynamics. In this work, we develop a computational technique based on ab initio Car-Parrinello molecular dynamics to trace charge carrier temporal motion in archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Particularly, we analyze charge dynamics in a single PEDOT chain and in two coupled chains with different degrees of coupling and study the effect of temperature. In our model we first initiate a positively charged polaron (compensated by a negative counterion) at one end of the chain, and subsequently displace the counterion to the other end of the chain and trace polaron dynamics in the system by monitoring bond length alternation in the PEDOT backbone and charge density distribution. We find that at low temperature (T = 1 K) the polaron distortion gradually disappears from its initial location and reappears near the new position of the counterion. At the room temperature (T = 300 K), we find that the distortions induced by polaron, and atomic vibrations are of the same magnitude, which makes tracking the polaron distortion challenging because it is hidden behind the temperature-induced vibrations. The novel approach developed in this work can be used to study polaron mobility along and between the chains, investigate charge transport in highly doped polymers, and explore other flexible polymers, including n-doped ones.

5.
European J Org Chem ; 26(41)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585413

RESUMO

Distinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-ß (Aß), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aß pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.

6.
Chemistry ; 27(7): 2410-2420, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175405

RESUMO

Two-component organogels and xerogels based on a C3 -symmetric pyrene-containing gelator have been deeply characterized through a wide range of techniques. Based on the formation of charge transfer complexes, the gelation phenomenon proved to be highly dependent on the nature of the electron poor dopant. This parameter significantly influenced the corresponding gelation domains, the critical gelation concentrations of acceptor dopants, the gel-to-sol transition temperatures, the microstructures formed in the xerogel state and their spectroscopic properties. In particular, titrations and variable-temperature UV-visible absorption spectroscopy demonstrated the key role of donor-acceptor interactions with a remarkable correlation between the phase transition temperatures and the disappearance of the characteristic charge transfer bands. The assignment of these electronic transitions was confirmed through time-dependent density functional theory (TD-DFT) calculations. Eventually, it was shown that the luminescent properties of these materials can be tuned with the temperature, either in intensity or emission wavelength.

7.
Chemphyschem ; 22(3): 323-335, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33219724

RESUMO

Anionic pentameric thiophene acetates can be used for fluorescence detection and diagnosis of protein amyloid aggregates. Replacing the central thiophene unit by benzothiadiazole (BTD) or quinoxaline (QX) leads to large emission shifts and basic spectral features have been reported [Chem. Eur. J. 2015, 21, 15133-13137]. Here we present new detailed experimental results of solvent effects, time-resolved fluorescence and examples employing multi-photon microscopy and lifetime imaging. Quantum chemical response calculations elucidate how the introduction of the BTD/QX groups changes the electronic states and emissions. The dramatic red-shift follows an increased conjugation and quinoid character of the π-electrons of the thiophene backbone. An efficient charge transfer in the excited states S1 and S2 compared to the all-thiophene analogue makes these more sensitive to the polarity and quenching by the solvent. Taken together, the results guide in the interpretation of images of stained Alzheimer disease brain sections employing advanced fluorescence microscopy and lifetime imaging, and can aid in optimizing future fluorescent ligand development.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas/química , Tiofenos/química , Elétrons , Ligantes
8.
Angew Chem Int Ed Engl ; 60(46): 24543-24548, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34291529

RESUMO

The synthesis, structures, and properties of [4]cyclonaphthodithiophene diimides ([4]C-NDTIs) are described. NDTIs as important n-type building blocks were catenated in the α-positions of thiophene rings via an unusual electrochemical-oxidation-promoted macrocyclization route. The thiophene-thiophene junction in [4]C-NDTIs results in an ideal pillar shape. This interesting topology, along with appealing electronic and optical properties inherited from the NDTI units, endows the [4]C-NDTIs with both near-infrared (NIR) light absorptions, strong excitonic coupling, and tight encapsulation of C60 . Stable orientations of the NDTI units in the nanopillars lead to stable inherent chirality, which enables detailed circular dichroism studies on the impact of isomeric structures on π-conjugation. Remarkably, the [4]C-NDTIs maintain the strong π-π stacking abilities of NDTI units and thus adopt two-dimensional (2D) lattice arrays at the molecular level. These nanopillar molecules have great potential to mimic natural photosynthetic systems for the development of multifunctional organic materials.

9.
Adv Funct Mater ; 30(28): 1910562, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684903

RESUMO

The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from trans-Pt(PEt3)2(C≡C-C6H5-C≡N)(C≡C-C6H5-COO-Cholesterol), are described and designated as PE1-CN-Chol. Polarized optical microscopy, differential scanning calorimetry, and wide-angle X-ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase. Cooling to room temperature leads to the formation of a cholesteric liquid crystal glass. Scanning tunneling microscopy of a PE1-CN-Chol monolayer reveals self-assembly at the solid-liquid interface with an array of two molecules arranged in pairs, oriented head-to-head through the CN groups, giving rise to a lamella arrangement. The lamella structure obtained from molecular dynamics calculations shows a clear phase separation between the conjugated platinum acetylide and the hydrophobic cholesterol moiety with the lamellae separation distance being 4.0 nm. Ultrafast transient absorption and flash photolysis spectra of the glass show intersystem crossing to the triplet state occurring within 100 ps following excitation. The triplet decay time of the film compared to aerated and deoxygenated solutions is consistent with oxygen quenching at the film surface but not within the film. The high chromophore concentration, high glass thermal stability, and long triplet lifetime in air show that these materials have potential as nonlinear absorbing materials.

10.
Nat Mater ; 18(6): 588-593, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011215

RESUMO

Charge carrier traps are generally highly detrimental for the performance of semiconductor devices. Unlike the situation for inorganic semiconductors, detailed knowledge about the characteristics and causes of traps in organic semiconductors is still very limited. Here, we accurately determine hole and electron trap energies for a wide range of organic semiconductors in thin-film form. We find that electron and hole trap energies follow a similar empirical rule and lie ~0.3-0.4 eV above the highest occupied molecular orbital and below the lowest unoccupied molecular orbital, respectively. Combining experimental and theoretical methods, the origin of the traps is shown to be a dielectric effect of water penetrating nanovoids in the organic semiconductor thin film. We also propose a solvent-annealing method to remove water-related traps from the materials investigated, irrespective of their energy levels. These findings represent a step towards the realization of trap-free organic semiconductor thin films.

11.
Biomacromolecules ; 21(8): 3069-3080, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619090

RESUMO

The hierarchical self-assembly of cellulose nanocrystals (CNCs) is an important phenomenon occurring naturally in plant cell walls. Utilization of this assembly for advanced applications requires a fundamental theoretical understanding of interactions between the CNCs, which is still incomplete. Hence, in this work, we used molecular dynamics simulations to study the effect of surface modification on the interactions between the CNCs and the resulting bundling process. We consider two types of common surface modifications of native CNCs, sulfated CNCs (SCNCs) and TEMPO-oxidized CNCs (TCNCs), in the presence of two types of counterions, Na+ and Ca2+, in solution. We used the umbrella sampling method to calculate the potential of the mean force (PMF), and we found that the strength of interaction between the modified CNCs decreases, compared with the native CNCs. The strength of interaction for TCNCs is almost similar to that for SCNCs at the same level of surface substitution, whereas the type of counterion has a strong effect on the PMF with a higher interaction energy between the CNCs in the presence of a divalent counterion as compared to a monovalent counterion. Finally, we studied the self-assembly of CNCs into a hexagonal bundle for the native CNCs and sulfated CNCs focusing on the twist of the bundle, bound water inside the bundle, inter-CNC gap, and interaction energy between the CNCs in the bundle, and the effect of the counterions on the morphology of the bundle. The equilibrium spacing of the CNCs within the bundle is found to be consistent with the results of PMF calculations for the minimum separation distance between the respective crystal surfaces.


Assuntos
Celulose , Nanopartículas , Polissacarídeos , Racionalização , Água
12.
J Phys Chem A ; 124(5): 875-888, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922760

RESUMO

The binding pocket proposed by König [ Chem. Commun. 2018 , 54 , 3030 - 3033 ] for the biomarker pentameric formyl thiophene acetic acid (p-FTAA) in the fibrillar structure of amyloid-ß(1-42) has been put to the test by the comparison of theoretical and experimental optical absorption and fluorescence spectra obtained in a water environment and inside the protein scaffold. The optical absorption/emission properties of this luminescent conjugated oligothiophene were studied by means of classical force field molecular dynamics simulations to account for the sampling of configuration space in conjunction with polarizable embedding time-dependent density functional theory calculations of spectra. The nuclear motions of residues in the ß-sheet were found to be modest, and the time dependence of embedding parameters was shown to be negligible so that a time-independent parameter set could be derived and used for all 300 snapshots considered in the spectrum averaging. In regard to linear absorption spectra, the calculated red shift due to protein binding for the dominant S1 ← S0 transition in p-FTAA was found to be equal to 23 nm (0.17 eV), which is in excellent agreement with the corresponding experimental result of 18 nm and taken as corroborating evidence for having correctly identified the binding pocket of p-FTAA in the amyloid. The underlying mechanisms for the calculated red shift were disentangled, and it is shown that some 20 nm (0.15 eV) of the total 23 nm (0.17 eV) is associated with increased planarity of p-FTAA in the binding pocket, whereas a mere 3 nm (0.02 eV) is associated with changes in the environment. In regard to emission spectra, we demonstrate that intersystem crossing from the excited S1 state to the triplet manifold of states is a less likely event for p-FTAA in the binding pocket as compared to in the aqueous solution, and we thereby partly explain the much higher quantum yield of fluorescence for the more rigid p-FTAA in the binding pocket. Two-photon absorption in p-FTAA is shown to predominantly occur to an overall symmetric excited state and be more than twice as strong for the biomarker in the binding pocket as compared to in water. The corresponding red shift, on the other hand, is very small. Earlier experimental two-photon fluorescence imaging using p-FTAA is shown not to target the dominant two-photon state, and ways to reach a higher image quality (lower signal-to-noise ratio) are proposed in terms of tuning the laser wavelength toward the region of 600 nm or the synthesis of asymmetric ligands with S1 states that are both one- and two-photon allowed.

13.
Phys Chem Chem Phys ; 21(7): 3637-3643, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30379159

RESUMO

DNA binding modes of the stereoisomeric rotamers of two dithenylethene derivatives (DTE1 and DTE2) representing candidate molecular photoswitches of great promise for photopharmacology and nanotechnology have been identified and characterized in terms of their binding energies and electronic circular dichroism (CD) responses. In the open form, two binding modes are identified namely minor-groove binding of the lowest-energy conformer with an anti-parallel arrangement of methyl groups and major-groove double-intercalation of the P-enantiomers of an intermediate-state rotamer. Only the latter binding mode is found to be enantiomerically selective and expected to have an overall negative linear dichroism (LD) as observed in the experiment for DTE1 (Angew. Chem., Int. Ed., 2013, 52, 4393). In the closed form, the most favorable binding mode is found to be minor groove binding. Also this binding mode is found to be enantiomerically selective and for DTE1, it is the M-enantiomer that binds the strongest, showing a positive theoretical signature CD band in the long wavelength region with origin in pyridinium ligands. The theoretical CD spectrum is found to be in good agreement with the experimental one, which provides an indirect evidence for a correct identification of the binding mode in the closed form.


Assuntos
Dicroísmo Circular , DNA/química , Etilenos/química , Simulação de Dinâmica Molecular
14.
Phys Chem Chem Phys ; 21(3): 1375-1383, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30601493

RESUMO

Ferroelectrics find broad applications, e.g. in non-volatile memories, but the switching kinetics in real, disordered, materials is still incompletely understood. Here, we develop an electrostatic model to study ferroelectric switching using 3D Monte Carlo simulations. We apply this model to the prototypical small molecular ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA) and find good agreement between the Monte Carlo simulations, experiments, and molecular dynamics studies. Since the model lacks any explicit steric effects, we conclude that these are of minor importance. While the material is shown to have a frustrated antiferroelectric ground state, it behaves as a normal ferroelectric under practical conditions due to the large energy barrier for switching that prevents the material from reaching its ground state after poling. We find that field-driven polarization reversal and spontaneous depolarization have orders of magnitude different switching kinetics. For the former, which determines the coercive field and is relevant for data writing, nucleation occurs at the electrodes, whereas for the latter, which governs data retention, nucleation occurs at disorder-induced defects. As a result, by reducing the disorder in the system, the polarization retention time can be increased dramatically while the coercive field remains unchanged.

15.
Phys Chem Chem Phys ; 21(46): 25606-25625, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31720607

RESUMO

Electronic coupling between adjacent molecules is one of the key parameters determining the charge transfer (CT) rates in bulk heterojunction (BHJ) polymer solar cells (PSCs). We calculate theoretically electronic couplings for exciton dissociation (ED) and charge recombination (CR) processes at local poly(thiophene-co-quinoxaline) (TQ)-PC71BM interfaces. We use eigenstate-based coupling schemes, i.e. the generalized Mulliken-Hush (GMH) and fragment charge difference (FCD) schemes, including 2 to multiple (3-11) states. Moreover, we study the effects of functionals, excited state methods, basis sets, surrounding media, and relative placements of TQ and PC71BM on the coupling values. Generally, both schemes provide consistent couplings with the global hybrid functionals, which yield more charge-localized diabatic states and constant coupling values regardless of the number of states, and so the 2-state schemes may be sufficient. The (non-tuned and optimally tuned) long-range corrected (LRC) functionals result in more notable mixing of the local components with the CT states. Employing multiple states reduces the mixing and thus improves the LRC results, although the method still affects the GMH CR couplings. As the FCD scheme is less sensitive, we recommend combining it with the multi-state treatment for polymer-fullerene systems when using the LRC functionals. Finally, we employ the 11-state FCD couplings to calculate the ED and CR rates, which are consistent with the experimental rates of the polymer-fullerene systems. Our results provide more insight into choosing a suitable eigenstate-based coupling scheme for predicting the electronic couplings and CT rates in photoactive systems.

16.
Phys Chem Chem Phys ; 21(4): 2069-2079, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30638230

RESUMO

Despite being very well established in the field of electro-optics, ferroelectric liquid crystals so far lacked interest from a ferroelectric device perspective due to a typically high operating temperature, a modest remnant polarization and/or poor polarization retention. Here, we experimentally demonstrate how simple structural modification of a prototypical ferroelectric liquid-crystal benzene-1,3,5-trisamide (BTA) - introduction of branched-tail substituents - results in materials with a wide operating temperature range and a data retention time of more than 10 years in thin-film solution-processed capacitor devices at room temperature. The observed differences between linear- and branched-tail compounds are analyzed using density functional theory (DFT) and molecular dynamics (MD) simulations. We conclude that morphological factors like improved packing quality and reduced disorder, rather than electrostatic interactions or intra/inter-columnar steric hindrance, underlay the superior properties of the branched-tailed BTAs. Synergistic effects upon blending of compounds with branched and linear side-chains can be used to further improve the materials' characteristics.

17.
Chemistry ; 24(58): 15577-15588, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30346057

RESUMO

Metal complexes constitute an important class of DNA binders. In particular, a few ruthenium polyazaaromatic complexes are attractive as "light switches" because of their strong luminescence enhancement upon DNA binding. In this paper, a comprehensive study on the binding modes of several mononuclear and binuclear ruthenium complexes to human telomeric sequences, made of repeats of the d(TTAGGG) fragment is reported. These DNA sequences form G-quadruplexes (G4s) at the ends of chromosomes and constitute a relevant biomolecular target in cancer research. By combining spectroscopy experiments and molecular modelling simulations, several key properties are deciphered: the binding modes, the stabilization of G4 upon binding, and the selectivity of these complexes towards G4 versus double-stranded DNA. These results are rationalized by assessing the possible deformation of G4 and the binding free energies of several binding modes via modelling approaches. Altogether, this comparative study provides fundamental insights into the molecular recognition properties and selectivity of Ru complexes towards this important class of DNA G4s.


Assuntos
DNA/metabolismo , Quadruplex G , Rutênio/metabolismo , Telômero/metabolismo , Sítios de Ligação , DNA/química , Humanos , Estrutura Molecular , Rutênio/química , Telômero/química
18.
J Am Chem Soc ; 139(42): 14947-14953, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28968102

RESUMO

Induced circular dichroism (ICD) of DNA-binding ligands is well known to be strongly influenced by the specific mode of binding, but the relative importance of the possible mechanisms has remained undetermined. With a combination of molecular dynamics simulations, CD response calculations, and experiments on an AT-sequence, we show that the ICD of minor-groove-bound 4',6-diamidino-2-phenylindole (DAPI) originates from an intricate interplay between the chiral imprint of DNA, off-resonant excitonic coupling to nucleobases, charge-transfer, and resonant excitonic coupling between DAPIs. The significant contributions from charge-transfer and the chiral imprint to the ICD demonstrate the inadequacy of a standard Frenkel exciton theory of the DAPI-DNA interactions.


Assuntos
Dicroísmo Circular , DNA/química , Indóis/química , Sequência de Bases , DNA/genética , Ligantes , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
19.
J Comput Chem ; 38(14): 1039-1048, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28318028

RESUMO

Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC71 BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc.

20.
Chemistry ; 23(64): 16328-16337, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28872717

RESUMO

We report on the benefits of changing the bridging group X of bis-pyridyl ligands, that is, Py-X-Py where X is NH, CH2 , C(CH3 )2 , or PPh, on the photo- and electroluminescent properties of a new family of luminescent cationic H-heterocyclic carbene (NHC) copper(I) complexes. A joint experimental and theoretical study demonstrates that the bridging group affects the molecular conformation from a planar-like structure (X is NH and CH2 ) to a boat-like structure (X is C(CH3 )2 and PPh), leading to i) four-fold enhancement of the photoluminescence quantum yield (ϕem ) without affecting the thermally activated delayed fluorescence mechanism, and ii) one order of magnitude reduction of the ionic conductivity (σ) of thin films. This leads to an overall enhancement of the device efficacy and luminance owing to the increased ϕem and the use of low applied driving currents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA