Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biol Lett ; 19(11): 20230322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909056

RESUMO

Most organisms are host to symbionts and pathogens, which led to the evolution of immune strategies to prevent harm. Whilst the immune defences of vertebrates are classically divided into innate and adaptive, insects lack specialized cells involved in adaptive immunity, but have been shown to exhibit immune priming: the enhanced survival upon infection after a first exposure to the same pathogen or pathogen-derived components. An important piece of the puzzle are the pathogen-associated molecules that induce these immune priming responses. Here, we make use of the model system consisting of the red flour beetle (Tribolium castaneum) and its bacterial pathogen Bacillus thuringiensis, to compare the proteomes of culture supernatants of two closely related B. thuringiensis strains that either induce priming via the oral route, or not. Among the proteins that might be immunostimulatory to T. castaneum, we identify the Cry3Aa toxin, an important plasmid-encoded virulence factor of B. thuringiensis. In further priming-infection assays we test the relevance of Cry-carrying plasmids for immune priming. Our findings provide valuable insights for future studies to perform experiments on the mechanisms and evolution of immune priming.


Assuntos
Bacillus thuringiensis , Besouros , Tribolium , Animais , Proteoma , Larva/microbiologia , Bactérias , Bacillus thuringiensis/fisiologia
2.
Insects ; 11(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344621

RESUMO

Bacillus thuringiensis is a spore-forming bacterium which infects insect larvae naturally via the oral route. Its virulence factors interact with the epithelium of the digestive tract of insect larvae, disrupting its function and eventually leading to the death of susceptible hosts. The most cited B. thuringiensis killing mechanism is the extensive damage caused to the insect midgut, leading to its leakage. The mortality caused by B. thuringiensis has been shown to vary between serovars and isolates, as well as between host life stages. Moreover, whether susceptibility to B. thuringiensis-induced gut leakage is generalized to all host species and whether there is individual variation within species is unclear. In this study, we adapted a non-invasive "Smurf" assay from Drosophila melanogaster to two species of tenebrionid beetles: The mealworm beetle Tenebrio molitor and the red flour beetle Tribolium castaneum, during exposure to B. thuringiensis. We highlight a differential mortality between two age/size classes of T. molitor larvae, as well as different killing dynamics between B. thuringiensis var. tenebrionis and var. tolworthi in T. castaneum. The Smurf assay did not reveal a high occurrence of extensive gut disintegration in both host species upon ingestion during B. thuringiensis exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA