Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059778

RESUMO

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Idoso de 80 Anos ou mais , Animais , Encéfalo/diagnóstico por imagem , Olho/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional/normas , Rim/diagnóstico por imagem , Limite de Detecção , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica/normas , Pâncreas/diagnóstico por imagem , Coloração e Rotulagem/normas , Suínos , Glândula Tireoide/diagnóstico por imagem
2.
Annu Rev Biochem ; 83: 813-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606136

RESUMO

Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.


Assuntos
Íons/química , Ácidos Nucleicos/química , Algoritmos , Sítios de Ligação , Cátions , Cristalografia por Raios X , DNA/química , Magnésio/química , Metais/química , Modelos Teóricos , Conformação de Ácido Nucleico , Distribuição de Poisson , RNA/química , Software , Eletricidade Estática , Termodinâmica
3.
Nucleic Acids Res ; 52(1): 59-72, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000393

RESUMO

DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.


Assuntos
DNA Super-Helicoidal , DNA , Fluorescência , Substâncias Intercalantes/química , Plasmídeos/genética
4.
Proc Natl Acad Sci U S A ; 119(14): e2114397119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312342

RESUMO

SignificanceIn the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage. Our assay is sensitive to blocking agents preventing RBD:ACE2 bond formation. It will thus provide a powerful approach to investigate the modes of action of neutralizing antibodies and other agents designed to block RBD binding to ACE2 that are currently developed as potential COVID-19 therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/química , COVID-19/diagnóstico , Suscetibilidade a Doenças , Humanos , Ligação Proteica
5.
J Biol Chem ; 299(7): 104874, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257819

RESUMO

Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment. The method is based on two subsequent PCRs: first ∼380 bp long DNA strands are generated that contain multiple labels, which are used as "megaprimers" in a second PCR to generate ∼kbp long double-stranded DNA constructs with multiple labels at the respective ends. To achieve high-force stability, we use dibenzocyclooctyne-based click chemistry for covalent attachment to the surface and biotin-streptavidin coupling to the bead. The resulting tethers are torsionally constrained and extremely stable under load, with an average lifetime of 70 ± 3 h at 45 pN. The high yield of the approach enables nucleosome reconstitution by salt dialysis on the functionalized DNA, and we demonstrate proof-of-concept measurements on nucleosome assembly statistics and inner turn unwrapping under force. We anticipate that our approach will facilitate a range of studies of DNA interactions and nucleoprotein complexes under forces and torques.


Assuntos
DNA , Nucleossomos , DNA/química , Fenômenos Mecânicos , Fenômenos Biofísicos , Reação em Cadeia da Polimerase
6.
Nucleic Acids Res ; 50(10): 5726-5738, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35640616

RESUMO

The structure and properties of DNA depend on the environment, in particular the ion atmosphere. Here, we investigate how DNA twist -one of the central properties of DNA- changes with concentration and identity of the surrounding ions. To resolve how cations influence the twist, we combine single-molecule magnetic tweezer experiments and extensive all-atom molecular dynamics simulations. Two interconnected trends are observed for monovalent alkali and divalent alkaline earth cations. First, DNA twist increases monotonously with increasing concentration for all ions investigated. Second, for a given salt concentration, DNA twist strongly depends on cation identity. At 100 mM concentration, DNA twist increases as Na+ < K+ < Rb+ < Ba2+ < Li+ ≈ Cs+ < Sr2+ < Mg2+ < Ca2+. Our molecular dynamics simulations reveal that preferential binding of the cations to the DNA backbone or the nucleobases has opposing effects on DNA twist and provides the microscopic explanation of the observed ion specificity. However, the simulations also reveal shortcomings of existing force field parameters for Cs+ and Sr2+. The comprehensive view gained from our combined approach provides a foundation for understanding and predicting cation-induced structural changes both in nature and in DNA nanotechnology.


Assuntos
DNA , Simulação de Dinâmica Molecular , Cátions , Cátions Bivalentes , Cátions Monovalentes , DNA/química , Sódio , Cloreto de Sódio
7.
Nano Lett ; 23(4): 1236-1243, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745573

RESUMO

Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.


Assuntos
DNA , Nanopartículas , Microscopia de Força Atômica/métodos , DNA/química
8.
Nano Lett ; 23(11): 4862-4869, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212527

RESUMO

Mimicking and extending the gating properties of biological pores is of paramount interest for the fabrication of membranes that could be used in filtration or drug processing. Here, we build a selective and switchable nanopore for macromolecular cargo transport. Our approach exploits polymer graftings within artificial nanopores to control the translocation of biomolecules. To measure transport at the scale of individual biomolecules, we use fluorescence microscopy with a zero-mode waveguide set up. We show that grafting polymers that exhibit a lower critical solution temperature creates a toggle switch between an open and closed state of the nanopore depending on the temperature. We demonstrate tight control over the transport of DNA and viral capsids with a sharp transition (∼1 °C) and present a simple physical model that predicts key features of this transition. Our approach provides the potential for controllable and responsive nanopores in a range of applications.

9.
Nucleic Acids Res ; 49(9): 5143-5158, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905507

RESUMO

SYBR Gold is a commonly used and particularly bright fluorescent DNA stain, however, its chemical structure is unknown and its binding mode to DNA remains controversial. Here, we solve the structure of SYBR Gold by NMR and mass spectrometry to be [2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium] and determine its extinction coefficient. We quantitate SYBR Gold binding to DNA using two complementary approaches. First, we use single-molecule magnetic tweezers (MT) to determine the effects of SYBR Gold binding on DNA length and twist. The MT assay reveals systematic lengthening and unwinding of DNA by 19.1° ± 0.7° per molecule upon binding, consistent with intercalation, similar to the related dye SYBR Green I. We complement the MT data with spectroscopic characterization of SYBR Gold. The data are well described by a global binding model for dye concentrations ≤2.5 µM, with parameters that quantitatively agree with the MT results. The fluorescence increases linearly with the number of intercalated SYBR Gold molecules up to dye concentrations of ∼2.5 µM, where quenching and inner filter effects become relevant. In summary, we provide a mechanistic understanding of DNA-SYBR Gold interactions and present practical guidelines for optimal DNA detection and quantitative DNA sensing applications using SYBR Gold.


Assuntos
DNA/análise , Corantes Fluorescentes/química , Compostos Orgânicos/química , Benzotiazóis/química , DNA/química , Diaminas/química , Estrutura Molecular , Quinolinas/química
10.
Biophys J ; 121(5): 841-851, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065917

RESUMO

Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.


Assuntos
Histonas , Nucleossomos , Cromatina/genética , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
11.
Nucleic Acids Res ; 48(14): 8090-8098, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32597986

RESUMO

The DNA four-way (Holliday) junction is the central intermediate of genetic recombination, yet key aspects of its conformational and thermodynamic properties remain unclear. While multiple experimental approaches have been used to characterize the canonical X-shape conformers under specific ionic conditions, the complete conformational ensemble of this motif, especially at low ionic conditions, remains largely undetermined. In line with previous studies, our single-molecule Förster resonance energy transfer (smFRET) measurements of junction dynamics revealed transitions between two states under high salt conditions, but smFRET could not determine whether there are fast and unresolvable transitions between distinct conformations or a broad ensemble of related states under low and intermediate salt conditions. We therefore used an emerging technique, X-ray scattering interferometry (XSI), to directly probe the conformational ensemble of the Holliday junction across a wide range of ionic conditions. Our results demonstrated that the four-way junction adopts an out-of-plane geometry under low ionic conditions and revealed a conformational state at intermediate ionic conditions previously undetected by other methods. Our results provide critical information to build toward a full description of the conformational landscape of the Holliday junction and underscore the utility of XSI for probing conformational ensembles under a wide range of solution conditions.


Assuntos
DNA Cruciforme/química , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Concentração Osmolar , Difração de Raios X
12.
Proc Natl Acad Sci U S A ; 116(38): 18798-18807, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31462494

RESUMO

Single-molecule force spectroscopy has provided unprecedented insights into protein folding, force regulation, and function. So far, the field has relied primarily on atomic force microscope and optical tweezers assays that, while powerful, are limited in force resolution, throughput, and require feedback for constant force measurements. Here, we present a modular approach based on magnetic tweezers (MT) for highly multiplexed protein force spectroscopy. Our approach uses elastin-like polypeptide linkers for the specific attachment of proteins, requiring only short peptide tags on the protein of interest. The assay extends protein force spectroscopy into the low force (<1 pN) regime and enables parallel and ultra-stable measurements at constant forces. We present unfolding and refolding data for the small, single-domain protein ddFLN4, commonly used as a molecular fingerprint in force spectroscopy, and for the large, multidomain dimeric protein von Willebrand factor (VWF) that is critically involved in primary hemostasis. For both proteins, our measurements reveal exponential force dependencies of unfolding and refolding rates. We directly resolve the stabilization of the VWF A2 domain by Ca2+ and discover transitions in the VWF C domain stem at low forces that likely constitute the first steps of VWF's mechano-activation. Probing the force-dependent lifetime of biotin-streptavidin bonds, we find that monovalent streptavidin constructs with specific attachment geometry are significantly more force stable than commercial, multivalent streptavidin. We expect our modular approach to enable multiplexed force-spectroscopy measurements for a wide range of proteins, in particular in the physiologically relevant low-force regime.


Assuntos
Dobramento de Proteína , Fator de von Willebrand/química , Aminoácidos , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Elastina/química , Magnetismo , Fenômenos Mecânicos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Imagem Individual de Molécula
13.
Biophys J ; 118(7): 1690-1701, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32367807

RESUMO

DNA under torsional strain undergoes a buckling transition that is the fundamental step in plectoneme nucleation and supercoil dynamics, which are critical for the processing of genomic information. Despite its importance, quantitative models of the buckling transition, in particular to also explain the surprising two-orders-of-magnitude difference between the buckling times for RNA and DNA revealed by single-molecule tweezers experiments, are currently lacking. Additionally, little is known about the configurations of the DNA during the buckling transition because they are not directly observable experimentally. Here, we use a discrete worm-like chain model and Brownian dynamics to simulate the DNA/RNA buckling transition. Our simulations are in good agreement with experimentally determined parameters of the buckling transition. The simulations show that the buckling time strongly and exponentially depends on the bending stiffness, which accounts for more than half the measured difference between DNA and RNA. Analyzing the microscopic conformations of the chain revealed by our simulations, we find clear evidence for a solenoid-shaped transition state and a curl intermediate. The curl intermediate features a single loop and becomes increasingly populated at low forces. Taken together, the simulations suggest that the worm-like chain model can account semiquantitatively for the buckling dynamics of both DNA and RNA.


Assuntos
DNA , RNA , DNA/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA/genética
14.
Nucleic Acids Res ; 46(15): 7998-8009, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30053087

RESUMO

DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. Quantitative understanding and optimization of its functions requires precise experimental characterization and accurate modeling of DNA properties. A defining feature of DNA is its helicity. DNA unwinds with increasing temperature, even for temperatures well below the melting temperature. However, accurate quantitation of DNA unwinding under external forces and a microscopic understanding of the corresponding structural changes are currently lacking. Here we combine single-molecule magnetic tweezers measurements with atomistic molecular dynamics and coarse-grained simulations to obtain a comprehensive view of the temperature dependence of DNA twist. Experimentally, we find that DNA twist changes by ΔTw(T) = (-11.0 ± 1.2)°/(°C·kbp), independent of applied force, in the range of forces where torque-induced melting is negligible. Our atomistic simulations predict ΔTw(T) = (-11.1 ± 0.3)°/(°C·kbp), in quantitative agreement with experiments, and suggest that the untwisting of DNA with temperature is predominantly due to changes in DNA structure for defined backbone substates, while the effects of changes in substate populations are minor. Coarse-grained simulations using the oxDNA framework yield a value of ΔTw(T) = (-6.4 ± 0.2)°/(°C·kbp) in semi-quantitative agreement with experiments.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Temperatura , Simulação por Computador , Campos Magnéticos , Simulação de Dinâmica Molecular
15.
Nat Rev Genet ; 14(1): 9-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23150038

RESUMO

To understand genomic processes such as transcription, translation or splicing, we need to be able to study their spatial and temporal organization at the molecular level. Single-molecule approaches provide this opportunity, allowing researchers to monitor molecular conformations, interactions or diffusion quantitatively and in real time in purified systems and in the context of the living cell. This Review introduces the types of application of single-molecule approaches that can enhance our understanding of genome function.


Assuntos
Genômica/métodos , Replicação do DNA , Fenômenos Genéticos , Genômica/tendências , Biossíntese de Proteínas , Transcrição Gênica
16.
Nucleic Acids Res ; 45(10): 5920-5929, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28460037

RESUMO

The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt.


Assuntos
DNA/química , Cloreto de Magnésio/química , Nanotecnologia/instrumentação , Imagem Individual de Molécula/métodos , Cloreto de Sódio/química , Fenômenos Biomecânicos , Dureza , Cinética , Campos Magnéticos , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Pinças Ópticas , Imagem Individual de Molécula/instrumentação , Eletricidade Estática , Termodinâmica , Torção Mecânica
17.
Proc Natl Acad Sci U S A ; 113(5): 1208-13, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787887

RESUMO

The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF's hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above [Formula: see text]50 pN and provided [Formula: see text]80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF's effective length contributing to force sensing, they can be expected to tune VWF's sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF's function in hemostasis and thrombosis.


Assuntos
Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Dimerização , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Fator de von Willebrand/química
18.
Nano Lett ; 18(4): 2672-2676, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29554806

RESUMO

Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.


Assuntos
DNA/química , Cloreto de Magnésio/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Dimerização , Cinética , Nanoestruturas/ultraestrutura , Nanotecnologia , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Biophys J ; 114(8): 1970-1979, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694873

RESUMO

Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application.


Assuntos
Estatística como Assunto/métodos , Torque , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA