RESUMO
The polyclonal cytokine-induced killer (CIK) cells exhibit potent cytotoxicity against a variety of tumour cells including autologous and allogeneic acute myeloid leukaemic (AML) targets. At maturity, three lymphocyte subsets: CD3(-) CD56(+), CD3(+) CD56(-) and CD3(+) CD56(+), constitute the bulk of the CIK cell culture. The CD3(-) CD56(+) subset behaves like classical natural killer (NK) cells where cytotoxicity is potentiated by blocking the human leucocyte antigen Class I molecules in the AML targets. Both the CD3(+) CD56(+) and CD3(+) CD56(-) subsets, though known to kill autologous and allogeneic targets to a comparable degree and therefore non-major histocompatibility complex (MHC)-restricted, nevertheless require the presence of the MHC molecule on the target, which interacts with their CD3-T-cell receptor complex. Although CIK cells are often termed 'NK-like' T cells, we have demonstrated that the well-characterized NK receptors KIR, NKG2C/E, NKG2D and DNAM-1 are not involved in the process of AML recognition for the CD3(+) CD56(-) and CD3(+) CD56(+) subsets. The CD3(+) CD56(+) and CD3(+) CD56(-) subsets express a polyclonal and comparable TCRVbeta repertoire in a Gaussian distribution. The CD3(+) CD56(+) subset kills AML targets more efficiently than its CD3(+) CD56(-) counterpart because of the presence of a higher proportion of CD8(+) cells. The CD3(+) CD56(+) subset comprise more terminally differentiated late effector T cells that bear the CD27(+) CD28(-) or CD27(-) CD28(-) phenotype, with a higher granzyme A content. In comparison, the phenotype of the CD3(+) CD56(-) subset is consistent with early effector T cells that are CD27(+) CD28(+) and CD62L(+), known to be less cytotoxic but possess greater proliferative potential.
Assuntos
Células Matadoras Induzidas por Citocinas/imunologia , Leucemia Mieloide Aguda/imunologia , Complexo CD3/análise , Antígeno CD56/análise , Citotoxicidade Imunológica/imunologia , Humanos , Imunofenotipagem , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores Imunológicos/imunologia , Subpopulações de Linfócitos T/imunologia , Células Tumorais CultivadasRESUMO
The embryonic self-renewal factor SALL4 has been implicated in the development of human acute myeloid leukemia (AML). Transgenic mice expressing the human SALL4B allele develop AML, which indicates that this molecule contributes to leukemia development and maintenance. However, the underlying mechanism of SALL4-dependent AML progression is unknown. Using SALL4B transgenic mice, we observed that HoxA9 was significantly upregulated in SALL4B leukemic cells compared with wild-type controls. Downregulation of HoxA9 in SALL4B leukemic cells led to decreased replating capacity in vitro and delayed AML development in recipient mice. In primary human AML cells, downregulation of SALL4 led to decreased HOXA9 expression and enhanced apoptosis. We found that SALL4 bound a specific region of the HOXA9 promoter in leukemic cells. SALL4 overexpression led to enhanced binding of histone activation markers at the HOXA9 promoter region, as well as increased HOXA9 expression in these cells. Furthermore, we observed that SALL4 interacted with mixed-lineage leukemia (MLL) and co-occupied the HOXA9 promoter region with MLL in AML leukemic cells, which suggests that a SALL4/MLL pathway may control HOXA9 expression. In summary, our findings revealed a molecular mechanism for SALL4 function in leukemogenesis and suggest that targeting of the SALL4/MLL/HOXA9 pathway would be an innovative approach in treating AML.
Assuntos
Carcinogênese/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Células-Tronco Hematopoéticas , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Regulação para CimaRESUMO
Our previous work shows that the stem cell factor SALL4 plays a central role in embryonic and leukemic stem cells. In this study, we report that SALL4 expression was higher in drug resistant primary acute myeloid leukemic patients than those from drug-responsive cases. In addition, while overexpression of SALL4 led to drug resistance in cell lines, cells with decreased SALL4 expression were more sensitive to drug treatments than the parental cells. This led to our investigation of the implication of SALL4 in drug resistance and its role in side population (SP) cancer stem cells. SALL4 expression was higher in SP cells compared to non-SP cells by 2-4 fold in various malignant hematopoietic cell lines. Knocking down of SALL4 in isolated SP cells resulted in a reduction of SP cells, indicating that SALL4 is required for their self-renewal. The SP phenotype is known to be mediated by members of the ATP-binding cassette (ABC) drug transport protein family, such as ABCG2 and ABCA3. Using chromatin-immunoprecipitation (ChIP), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and electrophoretic mobility shift assay(EMSA), we demonstrated that SALL4 was able to bind to the promoter region of ABCA3 and activate its expression while regulating the expression of ABCG2 indirectly. Furthermore, SALL4 expression was positively correlated to those of ABCG2 and ABCA3 in primary leukemic patient samples. Taken together, our results suggest a novel role for SALL4 in drug sensitivity, at least in part through the maintenance of SP cells, and therefore may be responsible for drug-resistance in leukemia. We are the first to demonstrate a direct link between stem cell factor SALL4, SP and drug resistance in leukemia.