Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(20): e202201436, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35246909

RESUMO

In recent years, asymmetric catalysis of ynamides has attracted much attention, but these reactions mostly constructed central chirality, except for a few examples on the synthesis of axially chiral compounds which exclusively relied on noble-metal catalysis. Herein, a facile access to axially chiral N-heterocycles enabled by chiral Brønsted acid-catalyzed 5-endo-dig cyclization of ynamides is disclosed, which represents the first metal-free protocol for the construction of axially chiral compounds from ynamides. This method allows the practical and atom-economical synthesis of valuable N-arylindoles in excellent yields with generally excellent enantioselectivities. Moreover, organocatalysts and ligands based on such axially chiral N-arylindole skeletons are demonstrated to be applicable to asymmetric catalysis.

2.
Ecotoxicol Environ Saf ; 74(4): 1027-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21353704

RESUMO

The effects of three antibiotics (erythromycin, ciprofloxacin and sulfamethoxazole) on photosynthesis process of Selenastrum capricornutum were investigated by determining a battery of parameters including photosynthetic rate, chlorophyll fluorescence, Hill reaction, and ribulose-1.5-bisphosphate carboxylase activity, etc. The results indicated that three antibiotics could significantly inhibit the physiological progress including primary photochemistry, electron transport, photophosphorylation and carbon assimilation. Erythromycin could induce acute toxic effects at the concentration of 0.06 mg L(-1), while the same results were exhibited for ciprofloxacin and sulfamethoxazole at higher than 1.0 mg L(-1). Erythromycin was considerably more toxic than ciprofloxacin and sulfamethoxazole and may pose a higher potential risk to the aquatic ecosystem. Some indices like chlorophyll fluorescence, Mg(2+)-ATPase activity and RuBPCase activity showed a high specificity and sensitivity to the exposure of erythromycin, and may be potentially used as candidate biomarkers for the exposure of the macrolide antibiotics.


Assuntos
Antibacterianos/toxicidade , Clorófitas/efeitos dos fármacos , Ciprofloxacina/toxicidade , Eritromicina/toxicidade , Fotossíntese/efeitos dos fármacos , Sulfametoxazol/toxicidade , ATPase de Ca(2+) e Mg(2+)/metabolismo , Clorofila/metabolismo , Clorófitas/metabolismo , Clorófitas/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Fotofosforilação/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Front Plant Sci ; 8: 1328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824666

RESUMO

Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N) deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS) and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C) and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3) or ammonium (NH4Cl), were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days). LTS decreased the photosystem II (PSII) performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The difference was especially pronounced after addition of N, indicating that H. plumaeforme may be more resilient to temperature and N variation, which could explain its wider distribution in the natural environment.

4.
Ecol Evol ; 6(21): 7596-7609, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128114

RESUMO

Nitrogen (N) deposition levels and frequencies of extreme drought events are increasing globally. In efforts to improve understanding of plants' responses to associated stresses, we have investigated responses of mosses to drought under elevated nitrogen conditions. More specifically, we exposed Pogonatum cirratum subsp. fuscatum and Hypnum plumaeforme to various nitrate (KNO 3) or ammonium (NH 4Cl) treatments, with and without water deficit stress and monitored indices related to carbon (C) and N metabolism both immediately after the stress and after a short recovery period. The results show that N application stimulated both C and N assimilation activities, including ribulose-1,5-bisphosphate carboxylase, glutamine synthetase/glutamate synthase (GS/GOGAT), and glutamate dehydrogenase (GDH) activities, while water deficit inhibited C and N assimilation. The mosses could resist stress caused by excess N and water deficit by increasing their photorespiration activity and proline (Pro) contents. However, N supply increased their sensitivity to water stress, causing sharper reductions in C and N assimilation rates, and further increases in photorespiration and Pro contents, indicating more serious oxidative or osmotic stress in the mosses. In addition, there were interspecific differences in N assimilation pathways, as the GS/GOGAT and GDH pathways were the preferentially used ammonium assimilation pathways in P. cirratum and H. plumaeforme when stressed, respectively. After rehydration, both mosses exhibited overcompensation effects for most C and N assimilation activities, but when supplied with N, the activities were generally restored to previous levels (or less), indicating that N supply reduced their ability to recover from water deficit stress. In conclusion, mosses can tolerate a certain degree of water deficit stress and possess some resilience to environmental fluctuations, but elevated N deposition reduces their tolerance and ability to recover.

5.
Environ Pollut ; 172: 23-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22982550

RESUMO

We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate-glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate-glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate-glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.


Assuntos
Antibacterianos/toxicidade , Clorófitas/efeitos dos fármacos , Ciprofloxacina/toxicidade , Eritromicina/toxicidade , Sulfametoxazol/toxicidade , Poluentes Químicos da Água/toxicidade , Catalase/metabolismo , Clorófitas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA