Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell ; 173(4): 934-945.e12, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29606354

RESUMO

Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Fusão de Membrana/fisiologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Membrana Celular/química , Células Cromafins/citologia , Células Cromafins/metabolismo , Dinaminas/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Masculino , Microscopia Confocal , Modelos Biológicos , Técnicas de Patch-Clamp , Vesículas Secretórias/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412127

RESUMO

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Baço/patologia , Replicação Viral , Macrófagos/patologia
3.
PLoS Pathog ; 19(2): e1011126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36735752

RESUMO

Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.


Assuntos
Enterovirus , Vírus da Febre Aftosa , Febre Aftosa , Animais , Camundongos , Sistemas de Transporte de Aminoácidos Neutros , Ácido Aspártico/metabolismo , Vírus da Febre Aftosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral/fisiologia
4.
PLoS Pathog ; 19(7): e1011511, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410776

RESUMO

The innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication. Vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection induced a higher level of IFN-ß protein in NOG1 deficient mice. Meanwhile, NOG1-deficient mice were more resistant to VSV and HSV-1 infection. NOG1 inhibited type I IFN production by targeting IRF3. NOG1 was also found to interact with phosphorylated IFN regulatory factor 3 (IRF3) to impair its DNA binding activity, thereby downregulating the transcription of IFN-ß and downstream IFN-stimulated genes (ISGs). The GTP binding domain of NOG1 is responsible for this process. In conclusion, our study reveals an underlying mechanism of how NOG1 negatively regulates IFN-ß by targeting IRF3, which uncovers a novel role of NOG1 in host innate immunity.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Interferon Tipo I , Animais , Camundongos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Expressão Gênica , Imunidade Inata , DNA , Interferon Tipo I/metabolismo
5.
PLoS Pathog ; 19(2): e1011132, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745686

RESUMO

Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication. SVV infection caused the opening of mitochondrial permeability transition pore (mPTP) and led to voltage-dependent anion channel 1 (VDAC1)- and BCL2 antagonist/killer 1 (Bak) and Bak/BCL2-associated X (Bax)-dependent mtDNA leakage into the cytoplasm, while EV-A71 and FMDV infection induced mPTP opening and resulted in VDAC1-dependent mtDNA release. The released mtDNA bound to cGAS and activated cGAS-mediated antiviral immune response. cGAS was essential for inhibiting EV-A71, SVV, and FMDV replication by regulation of IFN-ß production. cGAS deficiency contributed to higher mortality of EV-A71- or FMDV-infected mice. In addition, we found that SVV 2C protein was responsible for decreasing cGAS expression through the autophagy pathway. The 9th and 153rd amino acid sites in 2C were critical for induction of cGAS degradation. Furthermore, we also show that EV-A71, CA16, and EMCV 2C antagonize the cGAS-stimulator of interferon genes (STING) pathway through interaction with STING, and highly conserved amino acids Y155 and S156 were critical for this inhibitory effect. In conclusion, these data reveal novel mechanisms of picornaviruses to block the antiviral effect mediated by the cGAS-STING signaling pathway, which will provide insights for developing antiviral strategies against picornaviruses.


Assuntos
Vírus da Febre Aftosa , Infecções por Picornaviridae , Animais , Camundongos , Antivirais/metabolismo , DNA Mitocondrial/genética , Vírus da Febre Aftosa/genética , Imunidade Inata , Interferon beta/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Infecções por Picornaviridae/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
J Virol ; 97(2): e0171222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651745

RESUMO

The pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection. PACT was essential for PPRV replication. Besides, the ectopic expression of N activated the PKR/eIF2α (α subunit of eukaryotic initiation factor 2) pathway through induction of PKR phosphorylation, but it did not induce PKR phosphorylation in PACT-deficient (PACT-/-) cells. PPRV N interacted with PACT, impairing the interaction between PACT and a PKR inhibitor, transactivation response RNA-binding protein (TRBP), which subsequently enhanced the interaction between PACT and PKR and thus promoted the activation of PKR and eIF2α phosphorylation, resulting in formation of stress granules (SGs). Consistently, PPRV infection induced SG formation through activation of the PKR/eIF2α pathway, and knockdown of N impaired PPRV-induced SG formation. PPRV-induced SG formation significantly decreased in PACT-/- cells as well. The role of SG formation in PPRV replication was subsequently investigated, which showed that SG formation plays a positive role in PPRV replication. By using an RNA fluorescence in situ hybridization assay, we found that PPRV-induced SGs hid cellular mRNA rather than viral mRNA. Altogether, our data provide the first evidence that PPRV N protein plays a role in modulating the PKR/eIF2α/SG axis and promotes virus replication through targeting PACT. IMPORTANCE Stress granule (SG) formation is a conserved cellular strategy to reduce stress-related damage regulating cell survival. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N interacted with PACT to regulate the assembly of SGs. N protein inhibited the interaction between PACT and a PKR inhibitor, TRBP, through binding to the M1 domain of PACT, which enhanced the interaction between PACT and PKR and thus promoted PKR activation and subsequent eIF2α phosphorylation as well as SG formation. The regulatory function of N protein was strikingly abrogated in PACT-/- cells. SGs induced by PPRV infection through the PKR/eIF2α pathway are PACT dependent. The loss-of-function assay indicated that PPRV-induced SGs were critical for PPRV replication. We concluded that the PPRV N protein manipulates the host PKR/eIF2α/SG axis to favor virus replication.


Assuntos
Proteínas do Nucleocapsídeo , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Proteínas de Ligação a RNA , Grânulos de Estresse , Replicação Viral , Animais , Humanos , Hibridização in Situ Fluorescente , Proteínas do Nucleocapsídeo/metabolismo , Peste dos Pequenos Ruminantes/fisiopatologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Replicação Viral/genética
7.
J Transl Med ; 22(1): 333, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576021

RESUMO

BACKGROUND: Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems. METHODS: In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems. Specifically, by combining gene‒gene interaction (edge) information with the relative entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic change in a biomolecular network and indicating the qualitative shift in the system state. RESULTS: The proposed method was validated using simulated data and real biological datasets of complex diseases. The applications show that for certain diseases, the ERE method helps to reveal so-called "dark genes" that are non-differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis. CONCLUSIONS: The proposed method effectively identified the critical transition states of complex diseases at the network level. Our study not only identified the critical transition states of various cancers but also provided two types of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method in this study therefore has great potential in personalized disease diagnosis.


Assuntos
Dinitrofluorbenzeno/análogos & derivados , Entropia , Humanos , Biomarcadores , Prognóstico , Progressão da Doença
8.
BMC Biol ; 21(1): 218, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833706

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS: Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS: The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.


Assuntos
Imunidade Inata , Pulmão , Animais , Camundongos , Pulmão/metabolismo , Linfócitos , Receptor de Morte Celular Programada 1/metabolismo , Citocinas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
9.
Hum Mol Genet ; 30(11): 1045-1056, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33615373

RESUMO

Craniofacial microsomia (CFM, OMIM%164 210) is one of the most common congenital facial abnormalities worldwide, but it's genetic risk factors and environmental threats are poorly investigated, as well as their interaction, making the diagnosis and prenatal screening of CFM impossible. We perform a comprehensive association study on the largest CFM cohort of 6074 samples. We identify 15 significant (P < 5 × 10-8) associated genomic loci (including eight previously reported) and decipher 107 candidates based on multi-omics data. Gene Ontology term enrichment found that these candidates are mainly enriched in neural crest cell (NCC) development and hypoxic environment. Single-cell RNA-seq data of mouse embryo demonstrate that nine of them show dramatic expression change during early cranial NCC development whose dysplasia is involved in pathogeny of CFM. Furthermore, we construct a well-performed CFM risk-predicting model based on polygenic risk score (PRS) method and estimate seven environmental risk factors that interacting with PRS. Single-nucleotide polymorphism-based PRS is significantly associated with CFM [P = 7.22 × 10-58, odds ratio = 3.15, 95% confidence interval (CI) 2.74-3.63], and the top fifth percentile has a 6.8-fold CFM risk comparing with the 10th percentile. Father's smoking increases CFM risk as evidenced by interaction parameter of -0.324 (95% CI -0.578 to -0.070, P = 0.011) with PRS. In conclusion, the newly identified risk loci will significantly improve our understandings of genetics contribution to CFM. The risk prediction model is promising for CFM prediction, and father's smoking is a key environmental risk factor for CFM through interacting with genetic factors.


Assuntos
Loci Gênicos/genética , Predisposição Genética para Doença , Síndrome de Goldenhar/diagnóstico , Patologia Molecular , Adulto , Animais , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Estudo de Associação Genômica Ampla , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/patologia , Humanos , Masculino , Camundongos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Diagnóstico Pré-Natal , RNA-Seq , Fatores de Risco , Análise de Célula Única
10.
J Virol ; 96(4): e0191921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908441

RESUMO

African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, porcine alveolar macrophages (PAMs) infected with ASFV was analyzed by ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them were amino acids and tricarboxylic acid (TCA) cycle intermediates. ASFV infection induced an increase in most of amino acids in the host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affect the glycolysis pathway, whereas it induced increases in citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted the TCA cycle. The activities of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acid synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of beta interferon (IFN-ß) and increased ASFV replication. Our data, for the first time, indicate that ASFV infection controls IFN-ß production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses and provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs. ASFV infection increased host TCA cycle and amino acid metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided insights into ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/metabolismo , Aminoácidos/metabolismo , Metabolismo Energético , Replicação Viral/fisiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Ácido Aspártico/metabolismo , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Ácido Láctico/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Metabolômica , Suínos
11.
J Virol ; 96(12): e0031722, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604142

RESUMO

The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1-/- knockout cells showed IFN-ß production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-ß production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-ß or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-ß production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-ß production and FMDV 3A antagonizes ANXA1-promoted IFN-ß production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world's most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-ß and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.


Assuntos
Anexina A1 , Vírus da Febre Aftosa , Replicação Viral , Animais , Anexina A1/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Vírus da Febre Aftosa/fisiologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon , Interferon beta/metabolismo , Interferon gama , Janus Quinase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo
12.
J Virol ; 95(18): e0082421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34190598

RESUMO

African swine fever is a devastating disease of swine caused by African swine fever virus (ASFV). The pathogenesis of the disease remains largely unknown, leaving the spread of the disease uncontrolled in many countries and regions. Here, we identified E120R, a structural protein of ASFV, as a key virulence factor and late-phase-expressed protein of the virus. E120R revealed an activity to suppress the host antiviral response through blocking beta interferon (IFN-ß) production, and the amino acids (aa) at sites 72 and 73 (amino acids 72-73) in the C-terminal domain were essential for this function. E120R interacted with interferon regulatory factor 3 (IRF3) and interfered with the recruitment of IRF3 to TANK-binding kinase 1 (TBK1), which in turn suppressed IRF3 phosphorylation, decreasing interferon production. A recombinant mutant ASFV was further constructed to confirm the claimed mechanism. The ASFV lacking the complete E120R region could not be rescued, whereas the virus could tolerate the deletion of the 72nd and 73rd residues in E120R (ASFV E120R-Δ72-73aa). ASFV E120R with the two-amino-acid deletion failed to interact with IRF3 during ASFV E120R-Δ72-73aa infection, and the viral infection activated IRF3 phosphorylation highly and induced more robust type I interferon production than its parental ASFV. An unbiased transcriptome-wide analysis of gene expression also confirmed that considerably more IFN-stimulated genes (ISGs) were detected in ASFV E120R-Δ72-73aa-infected porcine alveolar macrophages (PAMs) than in wild-type ASFV-infected PAMs. Together, our findings have identified a novel mechanism evolved by ASFV to inhibit the host antiviral response, and they provide a new target for guiding the development of ASFV live-attenuated vaccine. IMPORTANCE African swine fever is a highly contagious animal disease affecting the pig industry worldwide, which has brought enormous economic losses. Infection by the causative agent, African swine fever virus (ASFV), causes severe immunosuppression during viral infection, contributing to serious clinical manifestations. Therefore, identification of the viral proteins involved in immunosuppression is critical for ASFV vaccine design and development. Here, for the first time, we demonstrated that E120R protein, a structural protein of ASFV, played an important role in suppression of interferon regulatory factor 3 (IRF3) phosphorylation and type I interferon production by binding to IRF3 and blocking the recruitment of IRF3 to TANK-binding kinase 1 (TBK1). Deletion of the crucial binding sites in E120R critically increased the interferon response during ASFV infection. This study explored a novel antagonistic mechanism of ASFV, which is critical for guiding the development of ASFV live-attenuated vaccines.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Mutação , Proteínas Virais/metabolismo , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Animais , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fosforilação , Transdução de Sinais , Suínos , Proteínas Virais/genética , Virulência
13.
J Nanobiotechnology ; 20(1): 308, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764957

RESUMO

Diabetes mellitus (DM) is a disease caused by dysfunction or disruption of pancreatic islets. The advent and development of microfluidic organoids-on-a-chip platforms have facilitated reproduce of complex and dynamic environment for tissue or organ development and complex disease processes. For the research and treatment of DM, the platforms have been widely used to investigate the physiology and pathophysiology of islets. In this review, we first highlight how pancreatic islet organoids-on-a-chip have improved the reproducibility of stem cell differentiation and organoid culture. We further discuss the efficiency of microfluidics in the functional evaluation of pancreatic islet organoids, such as single-islet-sensitivity detection, long-term real-time monitoring, and automatic glucose adjustment to provide relevant stimulation. Then, we present the applications of islet-on-a-chip technology in disease modeling, drug screening and cell replacement therapy. Finally, we summarize the development and challenges of islet-on-a-chip and discuss the prospects of future research.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Humanos , Dispositivos Lab-On-A-Chip , Organoides , Reprodutibilidade dos Testes
14.
Chem Biodivers ; 19(12): e202200993, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36373347

RESUMO

A new iridoid glycoside, named 6'-O-trans-feruloyl-8-epiloganic acid, together with fifteen known compounds were isolated from the twigs and leaves of Callicarpa nudiflora, a traditional Chinese medicine to treat inflammatory-related diseases. Their structures were identified by comprehensive spectroscopic analysis and comparison with reported data. Bioassay results revealed that twelve of the isolates could obviously inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cell lines with IC50 values from 0.64 to 38.72 µM. Among them, compounds 1 (3.27 µM), 6 (5.23 µM), 13 (1.56 µM) and 14 (0.64 µM) exhibited significantly higher activities than that of the positive control (27.13 µM). Additionally, it was supposed that the presence of the carboxy group at the C-4 position of iridoid glycosides and glycosylation at C-3 position of flavonoids might impact their inhibitory activities against NO production.


Assuntos
Callicarpa , Glicosídeos Iridoides , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/química , Callicarpa/química , Flavonoides/farmacologia , Estrutura Molecular , Glicosídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico
15.
J Proteome Res ; 20(8): 4113-4130, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34289691

RESUMO

Peste des petits ruminants virus (PPRV) infection causes considerable innate immunosuppression in its host, which promotes viral replication. However, how the host rescues the innate immune response to counteract this immunosuppression during viral replication remains largely unknown. To explore the mechanisms of how a host counteracts PPRV-mediated innate immunosuppression, a high-throughput quantitation proteomic approach (isobaric tags for relative and absolute quantitation in conjunction with LC-MS/MS) was used to investigate the proteome landscape of goat fetal fibroblasts (GFFs) in response to PPRV infection. Eventually, 497 upregulated proteins and 358 downregulated proteins were identified. Many of the differentially expressed proteins were enriched in immune-related pathways. Blocking the activation of the innate immune response with a specific inhibitor BX795 in GFFs remarkably promoted PPRV replication, suggesting the significant antiviral role of the enriched immune-related pathways. The GO enrichment analysis showed that the host protein FANCL revealed a similar expression pattern to these innate immune-related proteins. In addition, the analysis of protein-protein interaction networks reveals a potential relationship between FANCL and the innate immune pathway. We determined that FANCL inhibited PPRV infection by enhancing type I interferon (IFN) and IFN-stimulated gene expression. Further investigation determined that FANCL induced type I IFN production by promoting TBK1 phosphorylation, thus impairing PPRV-mediated immunosuppression.


Assuntos
Vírus da Peste dos Pequenos Ruminantes , Animais , Cromatografia Líquida , Cabras , Imunidade Inata , Vírus da Peste dos Pequenos Ruminantes/genética , Fosforilação , Proteômica , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases
16.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894473

RESUMO

The role of nucleotide-binding oligomerization domain 2 (NOD2) in foot-and-mouth disease virus (FMDV)-infected cells remains unknown. Here, we showed that FMDV infection activated NOD2-mediated beta interferon (IFN-ß) and nuclear factor-κB (NF-ĸB) signaling pathways. NOD2 inhibited FMDV replication in the infected cells. FMDV infection triggered NOD2 transcription, while it reduced the abundance of NOD2 protein. Our results revealed that FMDV 2B, 2C, and 3C proteinase (3Cpro) were responsible for the decrease in NOD2 protein levels. 3Cpro is a viral proteinase that can cleave multiple host proteins and limit protein synthesis. Our previous studies determined that FMDV 2B suppressed protein expression of RIG-I and LGP2. Here, we found that 3Cpro and 2B also decreased NOD2 expression. However, this is the first report that 2C induced the reduction of NOD2 protein levels. We determined that both 2B- and 2C-induced decreases in NOD2 were independent of the cleavage of host eukaryotic translation initiation factor 4 gamma (eIF4G), induction of cellular apoptosis, or proteasome, lysosome, and caspase pathways. The interactions between NOD2 and 2B or 2C were observed in the context of viral infection. The carboxyl-terminal amino acids 105 to 114 and 135 to 144 of 2B were essential for the reduction of NOD2, while the residues 105 to 114 were required for the interaction. Amino acids 116 to 260 of the carboxyl terminus of 2C were essential for the interaction, while truncated 2C mutants did not reduce NOD2. These data suggested novel antagonistic mechanisms of FMDV that were mediated by 2B, 2C, and 3Cpro proteins.IMPORTANCE NOD2 was identified as a cytoplasmic viral pattern recognition receptor in 2009. Subsequently, many viruses were reported to activate NOD2-mediated signaling pathways. This study demonstrated that FMDV infection activated NOD2-mediated IFN-ß and NF-ĸB signaling pathways. Host cells have developed multiple strategies against viral infection; however, viruses have evolved many strategies to escape host defenses. FMDV has evolved multiple mechanisms to inhibit host type I IFN production. Here, we showed that NOD2 suppressed FMDV replication during viral infection. FMDV 2B, 2C, and 3Cpro decreased NOD2 protein expression by different mechanisms to promote viral replication. This study provided new insight into the immune evasion mechanisms mediated by FMDV and identified 2B, 2C, and 3Cpro as antagonistic factors for FMDV to evade host antiviral responses.


Assuntos
Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Antivirais , Proteínas de Transporte/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Febre Aftosa/metabolismo , Febre Aftosa/virologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/imunologia , Interferon beta/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteólise , Transdução de Sinais , Suínos , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
17.
Biochem Soc Trans ; 47(6): 1635-1650, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31829403

RESUMO

Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.


Assuntos
Células/ultraestrutura , Microscopia de Fluorescência/métodos , Animais , Luz , Fótons
18.
FASEB J ; : fj201701351, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906248

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious virus that affects cloven-hoofed animals. To understand better the role of nonstructural protein 2B of the causative agent FMD virus (FMDV) in the process of virus replication, we identified a porcine host protein, cyclophilin A (CypA), which interacts with FMDV 2B. The 2B-CypA interaction was confirmed by coimmunoprecipitation and GST pull-down assays. CypA showed antiviral functions during FMDV infection. Overexpression of CypA decreased FMDV leader protein (Lpro) and 3A at protein levels. CypA-induced reduction of Lpro enhanced the synthesis of host proteins and increased the integrality of host eukaryotic translation initiation factor (eIF)-4γ (eIF4G). The reduction of Lpro and 3A was dependent on the proteasome pathway. No interaction was identified between CypA and Lpro or 3A. However, CypA-induced reduction of Lpro and 3A was suppressed by 2B, and disruption of 2B-CypA interaction impaired this inhibitive effect induced by 2B. In summary, our findings identify the antiviral role of CypA against FMDV and provide key insights into how FMDV antagonizes host antiviral response by 2B protein.-Liu, H., Xue, Q., Cao, W., Yang, F., Ma, L., Liu, W., Zhang, K., Liu, X., Zhu, Z., Zheng, H. Foot-and-mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication.

19.
J Am Chem Soc ; 140(44): 14971-14979, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30336003

RESUMO

The interaction between radionuclides and nanomaterials could generate Cerenkov radiation (CR) for CR-induced photodynamic therapy (PDT) without requirement of external light excitation. However, the relatively weak CR interaction leaves clinicians uncertain about the benefits of this new type of PDT. Therefore, a novel strategy to amplify the therapeutic effect of CR-induced PDT is imminently required to overcome the disadvantages of traditional nanoparticulate PDT such as tissue penetration limitation, external light dependence, and low tumor accumulation of photosensitizers. Herein, magnetic nanoparticles (MNPs) with 89Zr radiolabeling and porphyrin molecules (TCPP) surface modification (i.e., 89Zr-MNP/TCPP) were synthesized for CR-induced PDT with magnetic targeting tumor delivery. As a novel strategy to break the depth and light dependence of traditional PDT, these 89Zr-MNP/TCPP exhibited high tumor accumulation under the presence of an external magnetic field, contributing to excellent tumor photodynamic therapeutic effect together with fluorescence, Cerenkov luminescence (CL), and Cerenkov resonance energy transfer (CRET) multimodal imaging to monitor the therapeutic process. The present study provides a major step forward in photodynamic therapy by developing an advanced phototherapy tool of magnetism-enhanced CR-induced PDT for effective targeting and treatment of tumors.


Assuntos
Nanopartículas de Magnetita/química , Fotoquimioterapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Porfirinas/química , Porfirinas/farmacologia , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Radioisótopos/farmacologia , Células Tumorais Cultivadas , Zircônio/química , Zircônio/farmacologia
20.
Biophys J ; 113(11): 2406-2414, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29211994

RESUMO

Endocytosis generates spherical or ellipsoid-like vesicles from the plasma membrane, which recycles vesicles that fuse with the plasma member during exocytosis in neurons and endocrine secretory cells. Although tension in the plasma membrane is generally considered to be an important factor in regulating endocytosis, whether membrane tension inhibits or facilitates endocytosis remains debated in the endocytosis field, and has been rarely studied for vesicular endocytosis in secretory cells. Here we report that increasing membrane tension by adjusting osmolarity inhibited both the rapid (a few seconds) and slow (tens of seconds) endocytosis in calyx-type nerve terminals containing conventional active zones and in neuroendocrine chromaffin cells. We address the mechanism of this phenomenon by computational modeling of the energy barrier that the system must overcome at the stage of membrane budding by an assembling protein coat. We show that this barrier grows with increasing tension, which may slow down or prevent membrane budding. These results suggest that in live secretory cells, membrane tension exerts inhibitory action on endocytosis.


Assuntos
Membrana Celular/metabolismo , Células Cromafins/citologia , Células Cromafins/metabolismo , Endocitose , Animais , Feminino , Espaço Intracelular/metabolismo , Cinética , Masculino , Camundongos , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA