RESUMO
Lysine lactylation (Kla) is a newly discovered posttranslational modification that is involved in important life activities, such as glycolysis-related cell function, macrophage polarization and nervous system regulation, and has received widespread attention due to the Warburg effect in tumor cells. In this work, we first design a natural language processing method to automatically extract the 3D structural features of Kla sites, avoiding potential biases caused by manually designed structural features. Then, we establish two Kla prediction frameworks, Attention-based feature fusion Kla model (ABFF-Kla) and EBFF-Kla, to integrate the sequence features and the structure features based on the attention layer and embedding layer, respectively. The results indicate that ABFF-Kla and Embedding-based feature fusion Kla model (EBFF-Kla), which fuse features from protein sequences and spatial structures, have better predictive performance than that of models that use only sequence features. Our work provides an approach for the automatic extraction of protein structural features, as well as a flexible framework for Kla prediction. The source code and the training data of the ABFF-Kla and the EBFF-Kla are publicly deposited at: https://github.com/ispotato/Lactylation_model.
Assuntos
Lisina , Processamento de Linguagem Natural , Sequência de Aminoácidos , Domínios Proteicos , Processamento de Proteína Pós-TraducionalRESUMO
Lactylation, as a novel posttranslational modification, is essential for studying the functions and regulation of proteins in physiological and pathological processes, as well as for gaining in-depth knowledge on the occurrence and development of many diseases, including tumors. However, few studies have examined the protein lactylation of one whole organism. Thus, we studied the lactylation of global proteins in Caenorhabditis elegans to obtain an in vivo lactylome. Using an MS-based platform, we identified 1836 Class I (localization probabilities > 0.75) lactylated sites in 487 proteins. Bioinformatics analysis showed that lactylated proteins were mainly located in the cytoplasm and involved in the tricarboxylic acid cycle (TCA cycle) and other metabolic pathways. Then, we evaluated the conservation of lactylation in different organisms. In total, 41 C. elegans proteins were lactylated and homologous to lactylated proteins in humans and rats. Moreover, lactylation on H4K80 was conserved in three species. An additional 238 lactylated proteins were identified in C. elegans for the first time. This study establishes the first lactylome database in C. elegans and provides a basis for studying the role of lactylation.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Ratos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo do Ácido Cítrico , Redes e Vias Metabólicas , Proteoma/metabolismoRESUMO
Objective To screen out the biomarkers linked to prognosis of breast invasive carcinoma based on the analysis of transcriptome data by random forest (RF),extreme gradient boosting (XGBoost),light gradient boosting machine (LightGBM),and categorical boosting (CatBoost). Methods We obtained the expression data of breast invasive carcinoma from The Cancer Genome Atlas and employed DESeq2,t-test,and Cox univariate analysis to identify the differentially expressed protein-coding genes associated with survival prognosis in human breast invasive carcinoma samples.Furthermore,RF,XGBoost,LightGBM,and CatBoost models were established to mine the protein-coding gene markers related to the prognosis of breast invasive cancer and the model performance was compared.The expression data of breast cancer from the Gene Expression Omnibus was used for validation. Results A total of 151 differentially expressed protein-coding genes related to survival prognosis were screened out.The machine learning model established with C3orf80,UGP2,and SPC25 demonstrated the best performance. Conclusions Three protein-coding genes (UGP2,C3orf80,and SPC25) were screened out to identify breast invasive carcinoma.This study provides a new direction for the treatment and diagnosis of breast invasive carcinoma.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Aprendizado de Máquina , Humanos , Neoplasias da Mama/genética , Feminino , Biomarcadores Tumorais/genética , Prognóstico , Perfilação da Expressão GênicaRESUMO
Lactate is closely related to various cellular processes, such as angiogenesis, responses to hypoxia, and macrophage polarization, while regulating natural immune signaling pathways and promoting neurogenesis and cognitive function. Lysine lactylation (Kla) is a novel posttranslational modification, the examination of which may lead to new understanding of the nonmetabolic functions of lactate and the various physiological and pathological processes in which lactate is involved, such as infection, tumorigenesis and tumor development. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), researchers have identified lactylation in human gastric cancer cells and some other species, but no research on lactylation in human lungs has been reported. In this study, we performed global profiling of lactylation in human lungs under normal physiological conditions, and 724 Kla sites in 451 proteins were identified. After comparing the identified proteins with those reported in human lactylation datasets, 141 proteins that undergo lactylation were identified for the first time in this study. Our work expands the database on human lactylation and helps advance the study on lactylation function and regulation under physiological and pathological conditions.
Assuntos
Lisina , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Ácido Láctico , PulmãoRESUMO
Objective To investigate the role and mechanism of eukaryotic translation elongation factor 1(EEF1) family members (EEF1D,EEF1A1,and EEF1A2) in lung adenocarcinoma (LUAD) based on public databases.Methods We examined EEF1 member expression levels in human LUAD samples via The Cancer Genome Atlas in the UCSC Xena browser and the Clinical Proteomic Tumor Analysis Consortium.We analyzed the mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 and their correlations with pathological variables via the Mann-Whitney U test.The Kaplan-Meier curves were established to assess the prognostic values of EEF1D,EEF1A1,and EEF1A2.The single-sample gene set enrichment analysis algorithm was employed to explore the relationship between the expression levels of EEF1 members and tumor immune cell infiltration.Spearman and Pearson correlation analyses were performed to examine the relationship between the expression levels of EEF1 members and those of the genes in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.The immunohistochemical assay was employed to determine the expression levels of EEF1D,EEF1A1,and EEF1A2 in the LUAD tissue (n=75) and paracancer tissue (n=75) samples.Results The mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 showed significant differences between tumor and paracancer tissues (all P<0.001).The patients with high protein levels of EEF1A1 showed bad prognosis in terms of overall survival (P=0.039),and those with high protein levels of EEF1A2 showed good prognosis in terms of overall survival (P=0.012).The influence of the mRNA level of EEF1D on prognosis was associated with pathological characteristics.The expression levels of EEF1 members were significantly associated with the infiltration of various immune cells and the expression of key molecules in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.Conclusion EEF1D,EEF1A1,and EEF1A2 are associated with the progression of LUAD,serving as the candidate prognostic markers for LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinogênese , RNA Mensageiro/genética , Fosfatidilinositol 3-Quinases , PrognósticoRESUMO
The lysine succinylation (Ksucc) is involved in many core energy metabolism pathways and affects the metabolic process in mitochondria, making this modification highly valuable for studying diseases related to mitochondrial disorders. In this paper, we used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to perform the first global profiling of succinylation in human lungs under normal physiological conditions. Using an MS-based platform, we identified 1485 Ksucc sites in 568 proteins. We then compared these sites with those previously identified in human succinylome studies to investigate specific succinylated proteins and identify their possible functions in the lung and to explore the substrate preferences of succinylation modifiers in different cell lines and at different subcellular localizations. Our work expands the succinylation database and supplementary materials on the human succinylome and will thus help in further study of the function of Ksucc and regulation under related physiological and pathological conditions.
Assuntos
Lisina , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Pulmão/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismoRESUMO
BACKGROUND: Aging is a complex biological process accompanied by a time-dependent functional decline that affects most living organisms. Omics studies help to comprehensively understand the mechanism of aging and discover potential intervention methods. Old mice are frequently obese with a fatty liver. METHODS: We applied mass spectrometry-based phosphoproteomics to obtain a global phosphorylation profile of the liver in mice aged 2 or 18 months. MaxQuant was used for quantitative analysis and PCA was used for unsupervised clustering. RESULTS: Through phosphoproteome analysis, a total of 5,685 phosphosites in 2,335 proteins were filtered for quantitative analysis. PCA analysis of both the phosphoproteome and transcriptome data could distinguish young and old mice. However, from kinase prediction, kinase-substrate interaction analysis, and KEGG functional enrichment analysis done with phosphoproteome data, we observed high phosphorylation of fatty acid biosynthesis, ß-oxidation, and potential secretory processes, together with low phosphorylation of the Egfr-Sos1-Araf/Braf-Map2k1-Mapk1 pathway and Ctnnb1 during aging. Proteins with differentially expressed phosphosites seemed more directly related to the aging-associated fatty liver phenotype than the differentially expressed transcripts. The phosphoproteome may reveal distinctive biological functions that are lost in the transcriptome. CONCLUSIONS: In summary, we constructed a phosphorylation-associated network in the mouse liver during normal aging, which may help to discover novel antiaging strategies.
RESUMO
Objective To obtain the proteome and acetylome profiles of livers in mice during normal aging.Methods We applied tandem mass tag labeling and liquid chromatography tandem mass spectrometry and achieved proteome and acetylome data in C57BL/6J male mice aged 2 and 18 months under physiological conditions.Results A total of 4712 proteins were quantified by proteome profiling,and 4818 acetylated sites in 1367 proteins by acetylome profiling.The proteome and acetylome revealed moderate differences in the livers of young and old mice.There were 195 differentially expressed proteins in the proteome and 113 differentially expressed acetylated sites corresponding to 76 proteins in the acetylome.Functional enrichment analysis for the proteome showed that aging-associated upregulated proteins were mainly involved in fatty acid metabolism,epoxygenase P450 pathway,drug catabolic process,organic hydroxy compound metabolic process,and arachidonic acid metabolic process,while the downregulated proteins were related to regulation of gene silencing,nucleosome assembly,protein heterotetramerization,response to interferon,protein-DNA complex assembly and other processes.For the acetylome,the proteins with aging-associated upregulated acetylated sites mainly participated in cofactor metabolism,small molecule catabolic process,ribose phosphate metabolic process,ribonucleotide metabolic process,and purine-containing compound metabolic process,while the proteins with downregulated acetylated sites were associated with sulfur compound metabolic process,response to unfolded protein,and amino acid metabolic process.Conclusion We profiled the proteome and acetylome of livers in mice during normal aging and generated datasets for further research on aging.
Assuntos
Lisina , Proteoma , Acetilação , Envelhecimento , Animais , Fígado , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismoRESUMO
Objective To obtain the metabolome profiles in liver and serum of mice during normal aging. Methods The liver and serum samples of ten 2-month-old mice and ten 18-month-old C57BL/6J mice under physiological conditions were collected.Metabolites were identified and quantified by liquid chromatography-tandem mass spectrometry.The overall assessment,differential screening,and functional analysis were performed with the filtered high-quality data. Results In the negative-ion mode and positive-ion mode,242 and 399 metabolites were identified in the liver and 265 and 230 in serum,respectively.The difference of metabolome between young and old mice was moderate.The upregulated metabolites identified in aging liver were related to the metabolism of riboflavin,glucose,and arachidonic acid,while the downregulated ones were associated with the metabolism of pyrimidine,purine,glycerophospholipid,glutathione,and nicotinamide.Altered metabolites in serum during aging were involved in a variety of nucleic acid metabolism-related pathways,such as pyrimidine metabolism,purine metabolism,one carbon pool by folate,and amino sugar and nucleotide sugar metabolism. Conclusions The metabolome profiles of mouse liver and serum both revealed dysregulated nucleic acid metabolism pathways during normal aging.This study provides metabolome data for further research on aging-associated mechanism and may support the discovery of intervention methods for aging.
Assuntos
Metaboloma , Metabolômica , Envelhecimento , Animais , Fígado , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Lysine crotonylation (Kcr) is a recently discovered post-translational modification that potentially regulates multiple biological processes. With an objective to expand the available crotonylation datasets, LC-MS/MS is performed using mouse liver samples under normal physiological conditions to obtain in vivo crotonylome. A label-free strategy is used and 10 034 Class I (localization probabilities > 0.75) crotonylated sites are identified in 2245 proteins. The KcrE, KcrD, and EKcr motifs are significantly enriched in the crotonylated peptides. The identified crotonylated proteins are mostly enzymes and primarily located in the cytoplasm and nucleus. Functional enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes shows that the crotonylated proteins are closely related to the purine-containing compound metabolic process, ribose phosphate metabolic process, carbon metabolism pathway, ribosome pathway, and a series of metabolism-associated biological processes. To the best of the authors' knowledge, this research provides the first report on the mouse liver crotonylome. Furthermore, it offers additional evidence that crotonylation exists in non-histone proteins, and is likely involved in various biological processes. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifiers PXD019145.
Assuntos
Lisina , Proteoma , Animais , Cromatografia Líquida , Fígado/metabolismo , Lisina/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Espectrometria de Massas em TandemRESUMO
Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. SIGNIFICANCE: Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
Assuntos
Lisina , Proteoma , Humanos , Lisina/metabolismo , Cromatografia Líquida , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
BACKGROUND: Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. METHODS: In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. FINDINGS: We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex; however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. INTERPRETATION: This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. FUNDING: This study was supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, and the Natural Science Foundation of Beijing.
Assuntos
COVID-19 , Camundongos , Humanos , Feminino , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Proteômica , Camundongos Transgênicos , Pulmão , Hipocampo , Rim , Tálamo , Modelos Animais de DoençasRESUMO
OBJECTIVE: To explore the bone marrow feature of hemopoietic system injured by benzene through analyzing 56 benzolism cases. METHODS: The 56 benzolism cases were divided into mild poisoning group, midrange poisoning group, aplastic anemia group, pancytopenia group and leukemia group. All cases progressed bone marrow aspiration and smear, and counted hundred karyocytes by Wright-Giemsa tinct bone marrow smear to classification and observe the cells' feature. RESULTS: The megakaryocytes and the extent of bone marrow hyperplasia were decreased by turns of mild poisoning group, midrange poisoning group and aplastic anemia group. The archaeocytes and juvenile cells proliferation in mild poisoning group and midrange poisoning group were inhibited and occurred cell paramorphia which related to intoxication. Comparing with the other groups and normal reference value, the pancytopenia group's percentage of bone marrow cells in karyocytes was significantly decreased (P < 0.01, P < 0.05) and the leukemia group's percentage of bone marrow cells in karyocytes was significantly increased (P < 0.01). The proportion of cell paramorphia and nucleus malformation of granulocytes and red blood cells in pancytopenia group and leukemia group were increased, especially in leukemia group. CONCLUSION: We saw the inhibition of archaeocytes and juvenile cells proliferation and some cell paramorphia appearances in mild poisoning and midrange poisoning cases of chronic benzolism. The abnormality changes which can be seen in bone marrow of severe benzolism cases were corresponding with the clinical classification.
Assuntos
Benzeno/intoxicação , Exame de Medula Óssea , Medula Óssea/patologia , Adulto , Anemia/etiologia , Anemia/patologia , Anemia Aplástica/etiologia , Anemia Aplástica/patologia , Células da Medula Óssea/citologia , Feminino , Humanos , Leucemia/etiologia , Leucemia/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosome-scale assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared by all orchids, while the older event was the τ event shared by most monocots. The results of MADS-box genes analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our results provide fundamental insights into orchid evolution and diversification.
RESUMO
Liparis bootanensis is an epiphytic orchid distributed in tropical and subtropical regions of Asia, and has been listed as an endangered species in the Wildlife Conservation List. In this study, the complete chloroplast genome of L. bootanensis was assembled using Illumina sequencing data. The complete chloroplast (cp) genome is 158,325 bp in length, including a pair of invert repeats (IRA and IRB) regions of 26,700 bp, large single-copy (LSC) region of 86,584 bp, and small single-copy (SSC) region of 18,341 bp. The chloroplast genome contains 133 genes, including 83 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The phylogenetic analysis indicated that Oberonia japonica was closely related to L. bootanensis based on 17chloroplast genomes matrix of Orchidaceae.
RESUMO
For more than twenty years now, GPCR dimers and larger oligomers have been the subject of intense debates. Evidence for a role of such complexes in receptor trafficking to and from the plasma membrane have been provided. However, one main issue is of course to determine whether or not such a phenomenon can be responsible for an allosteric and reciprocal control (allosteric control) of the subunits. Such a possibility would indeed add to the possible ways a cell integrates various signals targeting GPCRs. Among the large GPCR family, the class C receptors that include mGlu and GABAB receptors, represent excellent models to examine such a possibility as they are mandatory dimers. In the present review, we will report on the observed allosteric interaction between the subunits of class C GPCRs, both mGluRs and GABABRs, and on the structural bases of these interactions. We will then discuss these findings for other GPCR types such as the rhodopsin-like class A receptors. We will show that many of the observations made with class C receptors have also been reported with class A receptors, suggesting that the mechanisms involved in the allosteric control between subunits in GPCR dimers may not be unique to class C GPCRs.
Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Animais , Humanos , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores Acoplados a Proteínas G/químicaRESUMO
Recent studies have shown that high miR-155 expression was associated with poor prognosis in patients with acute myelogeneous leukemia (AML). Furthermore, targeting miR-155 results in monocytic differentiation and apoptosis. However, the exact role and mechanisms of miR-155 in human AML remains speculative. HL-60 cells were treated with anti-miR-155 for 72 h. Cell growth and apoptosis in vitro were detected by MTT, BrdU proliferation, colony formation and flow cytometry assay. The effect of anti-miR-155 on growth of HL-60 cells was also evaluated in a leukemia mouse model. Slug cDNA and PUMA siRNA trannsfection was used to assess the signal pathway. Different protein expression was detected by western blot assay and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. The results shown that targeting miR-155 resulted in a 24-fold decrease of miR-155 expression compared to negative control in the HL-60 cells. Targeting miR-155 significantly downregulated Slug and upregulated PUMA expression, and decreased HL-60 cell growth by 70% , impaired colony formation by approximately 60%, and increased HL-60 cell apoptosis by 45%. Targeting PUMA reversed miR-155 sliencing-induced proliferation and apoptosis of HL-60 cells. Restoration of Slug decreased PUMA expression. In murine engraftment models of HL-60 cells, we showed that targeting miR-155 was able to reduce tumor growth. This was accompanied with decreased Slug expression and increased PUMA expression in these tumors. Collectively, our findings strongly suggest targeting miR-155 exhibited in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of Slug expression and increase of PUMA expression.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Proliferação de Células/fisiologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT1/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Baixo , Células HL-60 , Humanos , MicroRNAs/genética , Regulação para CimaAssuntos
COVID-19/genética , Interações Hospedeiro-Patógeno/genética , Macaca mulatta/virologia , Fosfoproteínas/genética , SARS-CoV-2/patogenicidade , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca mulatta/genética , Macaca mulatta/imunologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Especificidade de Órgãos , Fosfoproteínas/classificação , Fosfoproteínas/imunologia , Proteômica/métodos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Transdução de Sinais , Carga ViralRESUMO
A new orchid species, Bulbophyllum pingnanense, is described and illustrated from Fujian, China. It is similar to Bulbophyllum brevipedunculatum and Bulbophyllum albociliatum in vegetative and floral morphology, but it can be distinguished from Bulbophyllum brevipedunculatum by having a longer dorsal sepal with longer white ciliate on margin, longer and lanceolate lateral sepals, and a glabrous lip. It can be distinguished from Bulbophyllum albociliatum by having a shorter inflorescence, and a longer dorsal sepal.
RESUMO
Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM10 single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO2and mineral particles, which increased the sulfur content of particles.