Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 110(3): 849-862, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167149

RESUMO

In higher plants, the generation and release of viable pollen from anthers is vital for double fertilization and the initiation of seed development. Thus, the characterization of genes related to pollen development and anther dehiscence in plants is of great significance. The F-box protein COI1 plays a crucial role in the jasmonate (JA) signaling pathway and interacts with many JAZ family proteins in the presence of jasmonoyl-isoleucine (JA-Ile) or coronatine (COR). The mutation of AtCOI1 in Arabidopsis leads to defective anther dehiscence and male sterility (MS), although COI has not been shown to affect fertility in Zea mays (maize). Here we identified two genes, ZmCOI2a and ZmCOI2b, that redundantly regulate gametophytic male fertility. Both ZmCOI2a and ZmCOI2b are highly homologous and constitutively expressed in all tissues tested. Subcellular localization revealed that ZmCOI2a and ZmCOI2b were located in the nucleus. The coi2a coi2b double mutant, generated by CRISPR/Cas9, had non-dehiscent anthers, delayed anther development and MS. In addition, coi2a coi2b male gametes could not be transmitted to the next generation because of severe defects in pollen germination. The JA content of coi2a coi2b anthers was unaltered compared with those of the wild type, and the exogenous application of JA could not rescue the fertility defects of coi2a coi2b. Transcriptome analysis showed that the expression of genes involving the JA signaling transduction pathway, including ZmJAZ3, ZmJAZ4, ZmJAZ5 and ZmJAZ15, was affected in coi2a coi2b. However, yeast two-hybrid assays showed that ZmJAZs interacted with ZmCOI1s, but not with ZmCOI2s. In conclusion, ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Plant Biotechnol J ; 21(8): 1707-1715, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195892

RESUMO

In vivo haploid induction has been extended from maize to monocotyledonous plants like rice, wheat, millet and dicotyledonous plants such as tomato, rapeseed, tobacco and cabbage. Accurate identification of haploids is a crucial step of doubled haploid technology, where a useful identification marker is very pivotal. R1-nj is an extensively used visual marker for haploid identification in maize. RFP and eGFP have been shown to be feasible in identifying haploid. However, these methods are either limited to specific species, or require specific equipment. It still lacks an efficient visual marker that is practical across different crop species. In this study, we introduced the RUBY reporter, a betalain biosynthesis system, into maize and tomato haploid inducers as a new marker for haploid identification. Results showed that expression of RUBY could result in deep betalain pigmentation in maize embryos as early as 10 days after pollination, and enabled 100% accuracy of immature haploid embryo identification. Further investigation in tomato revealed that the new marker led to deep red pigmentation in radicles and haploids can be identified easily and accurately. The results demonstrated that the RUBY reporter is a background-independent and efficient marker for haploid identification and would be promising in doubled haploid breeding across different crop species.


Assuntos
Solanum lycopersicum , Zea mays , Haploidia , Zea mays/genética , Solanum lycopersicum/genética , Melhoramento Vegetal/métodos , Triticum
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362332

RESUMO

Low temperature is a major environmental factor, which limits rapeseed (Brassica napus L.) growth, development, and productivity. So far, the physiological and molecular mechanisms of rapeseed responses to cold stress are not fully understood. Here, we explored the transcriptome and metabolome profiles of two rapeseed genotypes with contrasting cold responses, i.e., XY15 (cold-sensitive) and GX74 (cold-tolerant). The global metabolome profiling detected 545 metabolites in siliques of both genotypes before (CK) and after cold-stress treatment (LW). The contents of several sugar metabolites were affected by cold stress with the most accumulated saccharides being 3-dehydro-L-threonic acid, D-xylonic acid, inositol, D-mannose, D-fructose, D-glucose, and L-glucose. A total of 1943 and 5239 differentially expressed genes were identified from the transcriptome sequencing in XY15CK_vs_XY15LW and GX74CK_vs_GX74LW, respectively. We observed that genes enriched in sugar metabolism and biosynthesis-related pathways, photosynthesis, reactive oxygen species scavenging, phytohormone, and MAPK signaling were highly expressed in GX74LW. In addition, several genes associated with cold-tolerance-related pathways, e.g., the CBF-COR pathway and MAPK signaling, were specifically expressed in GX74LW. Contrarily, genes in the above-mentioned pathways were mostly downregulated in XY15LW. Thus, our results indicate the involvement of these pathways in the differential cold-stress responses in XY15 and GX74.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Resposta ao Choque Frio/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Brassica rapa/genética , Genótipo , Metaboloma , Açúcares
4.
J Integr Plant Biol ; 64(6): 1281-1294, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35249255

RESUMO

Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.


Assuntos
Brassica napus , Brassica napus/genética , Produtos Agrícolas/genética , Haploidia , Melhoramento Vegetal , Poliploidia , Nicotiana/genética
5.
J Am Chem Soc ; 142(1): 468-478, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31849221

RESUMO

Accessing hindered amines, particularly primary amines α to a fully substituted carbon center, is synthetically challenging. We report an electrochemical method to access such hindered amines starting from benchtop-stable iminium salts and cyanoheteroarenes. A wide variety of substituted heterocycles (pyridine, pyrimidine, pyrazine, purine, azaindole) can be utilized in the cross-coupling reaction, including those substituted with a halide, trifluoromethyl, ester, amide, or ether group, a heterocycle, or an unprotected alcohol or alkyne. Mechanistic insight based on DFT data, as well as cyclic voltammetry and NMR spectroscopy, suggests that a proton-coupled electron-transfer mechanism is operational as part of a hetero-biradical cross-coupling of α-amino radicals and radicals derived from cyanoheteroarenes.

6.
Anal Chem ; 91(21): 13907-13915, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31549812

RESUMO

Chromatographic separation, analysis and characterization of complex highly polar analyte mixtures can often be very challenging using conventional separation approaches. Analysis and purification of hydrophilic compounds have been dominated by liquid chromatography (LC) and ion-exchange chromatography (IC), with sub/supercritical fluid chromatography (SFC) moving toward these new applications beyond traditional chiral separations. However, the low polarity of supercritical carbon dioxide (CO2) has limited the use of SFC for separation and purification in the bioanalytical space, especially at the preparative scale. Reaction mixtures of highly polar species are strongly retained even using polar additives in alcohol modifier/CO2 based eluents. Herein, we overcome these problems by introducing chaotropic effects in SFC separations using a nontraditional mobile phase mixture consisting of ammonium hydroxide combined with high water concentration in the alcohol modifier and carbon dioxide. The separation mechanism was here elucidated based on extensive IC-CD (IC couple to conductivity detection) analysis of cyclic peptides subjected to the SFC conditions, indicating the in situ formation of a bicarbonate counterion (HCO3-). In contrast to other salts, HCO3- was found to play a crucial role acting as a chaotropic agent that disrupts undesired H-bonding interactions, which was demonstrated by size-exclusion chromatography coupled with differential hydrogen-deuterium exchange-mass spectrometry experiments (SEC-HDX-MS). In addition, the use of NH4OH in water-rich MeOH modifiers was compared to other commonly used basic additives (diethylamine, triethylamine, and isobutylamine) showing unmatched chromatographic and MS detection performance in terms of peak shape, retention, selectivity, and ionization as well as a completely different selectivity and retention behavior. Moreover, relative to ammonium formate and ammonium acetate in water-rich methanol modifier, the ammonium hydroxide in water additive showed better chromatographic performance with enhanced sensitivity. Further optimization of NH4OH and H2O levels in conjunction with MeOH/CO2 served to furnish a generic modifier (0.2% NH4OH, 5% H2O in MeOH) that enables the widespread transition of SFC to domains that were previously considered out of its scope. This approach is extensively applied to the separation, analysis, and purification of multicomponent reaction mixtures of closely related polar pharmaceuticals using readily available SFC instrumentation. The examples described here cover a broad spectrum of bioanalytical and pharmaceutical applications including analytical and preparative chromatography of organohalogenated species, nucleobases, nucleosides, nucleotides, sulfonamides, and cyclic peptides among other highly polar species.


Assuntos
Hidróxido de Amônia/química , Cromatografia com Fluido Supercrítico/métodos , Peptídeos/isolamento & purificação , Preparações Farmacêuticas/isolamento & purificação , Água/química , Dióxido de Carbono/química , Ligação de Hidrogênio , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Interações Hidrofóbicas e Hidrofílicas , Metanol/química
7.
Bioorg Med Chem Lett ; 29(14): 1854-1858, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31104995

RESUMO

The derivatization of pharmaceuticals is a core activity in the discovery and development of new medicines. Late-stage functionalization via modern CH functionalization chemistry has emerged as a powerful technique with which to diversify advanced pharmaceutical intermediates. We report herein a case study in late-stage functionalization towards the development of a new class of indazole-based mineralocorticoid receptor antagonists (MRA). An effort to modify the electronics of the core indazole heterocycle inspired the use of modern CH borylation chemistry. New reactivity patterns were revealed and studied computationally. Ultimately, a de novo synthesis delivered a key 6-fluoroindazole compound 26, a potent MRA with excellent metabolic stability.


Assuntos
Desenvolvimento de Medicamentos/métodos , Indazóis/química , Antagonistas de Receptores de Mineralocorticoides/química , Estrutura Molecular
9.
Chirality ; 29(12): 854-864, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28981965

RESUMO

The absolute configurations of the separated enantiomers of fluralaner, a racemic animal health product used to prevent fleas and ticks, have been assigned using vibrational circular dichroism (VCD). The crystallographic structure of the active enantiomer (+)-fluralaner has previously been shown to have the (S) configuration using small molecule crystallography. We sought a faster analytical method to determine the absolute configuration of the separated enantiomers. When comparing the measured IR (infrared) and VCD spectra, it is apparent that the amide carbonyl groups appear in the IR but are nearly absent in the VCD. Computational work to calculate the VCD and IR using in vacuo models, implicit solvation, and explicitly solvated complexes has implicated conformational averaging of the carbonyl VCD intensities.


Assuntos
Amidas/química , Isoxazóis/química , Dicroísmo Circular , Conformação Molecular , Estereoisomerismo , Vibração
10.
Org Biomol Chem ; 12(14): 2161-6, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589831

RESUMO

The use of state-of-the-art separation tools from the pharmaceutical industry for addressing intractable separation problems from academic synthetic chemistry is evaluated, showing fast and useful results for the resolution of complex mixtures, separation of closely related components, visualization of difficult to detect compounds and purification of synthetic intermediates. Some recommendations for potential near term deployment of separation tools within academia and the evolution of next generation separation technologies are discussed.


Assuntos
Fracionamento Químico/métodos , Indústria Farmacêutica/métodos , Compostos Orgânicos/síntese química , Compostos Orgânicos/isolamento & purificação , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Laboratórios , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA