Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 29(22): 36389-36399, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809050

RESUMO

Nonlinear optical property of atomically thin materials suspended in liquid has attracted a lot of attention recently due to the rapid development of liquid exfoliation methods. Here we report laser-induced dynamic orientational alignment and nonlinear-like optical response of the suspensions as a result of their intrinsic anisotropic properties and thermal convection of solvents. Graphene and graphene oxide suspensions are used as examples, and the transition to ordered states from initial optically isotropic suspensions is revealed by birefringence imaging. Computational fluid dynamics is performed to simulate the velocity evolution of convection flow and understand alignment-induced birefringence patterns. The optical transmission of these suspensions exhibits nonlinear-like saturable or reverse saturable absorptions in Z-scan measurements with both nanosecond and continuous-wave lasers. Our findings not only demonstrate a non-contact controlling of macroscopic orientation and collective optical properties of nanomaterial suspensions by laser but also pave the way for further explorations of optical properties and novel device applications of low-dimensional nanomaterials.

2.
Adv Mater ; 36(7): e2306756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819771

RESUMO

A typical Tesla thermomagnetic engine employs a solid magnetic wheel to convert thermal energy into mechanical energy, while thermomagnetic convection in ferrofluid is still challenging to observe because it is a volume convection that occurs in an enclosed space. Using a water-based ferrofluid, a liquid Tesla thermomagnetic engine is demonstrated and reports the observation of thermomagnetic convection on a free surface. Both types of fluid motions are driven by light and observed by simply placing ferrofluid on a cylindrical magnet. The surface thermomagnetic convection on the free surface is made possible by eliminating the Marangoni effect, while the spinning of the liquid wheel is achieved through the solid-like behavior of the ferrofluid under a strong magnetic field. Increasing the magnetic field reveals a transition from simple thermomagnetic convection to a combination of the central spin of the spiky wheel surrounded by thermomagnetic convection in the outer region of the ferrofluid. The coupling between multiple ferrofluid wheels through a fluid bridge is further demonstrated. These demonstrations not only unveil the unique properties of ferrofluid but also provide a new platform for studying complex fluid dynamics and thermomagnetic convection, opening up exciting opportunities for light-controlled fluid actuation and soft robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA