Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36580913

RESUMO

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Assuntos
Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19 , SARS-CoV-2/classificação , SARS-CoV-2/genética
2.
Cell ; 186(6): 1263-1278.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868218

RESUMO

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.


Assuntos
COVID-19 , Vírus de RNA , Humanos , SARS-CoV-2/genética , Mutação , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Immunity ; 56(10): 2442-2455.e8, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776849

RESUMO

SARS-CoV-2 continues to evolve, with many variants evading clinically authorized antibodies. To isolate monoclonal antibodies (mAbs) with broadly neutralizing capacities against the virus, we screened serum samples from convalescing COVID-19 patients. We isolated two mAbs, 12-16 and 12-19, which neutralized all SARS-CoV-2 variants tested, including the XBB subvariants, and prevented infection in hamsters challenged with Omicron BA.1 intranasally. Structurally, both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, uncovering a site of vulnerability on SARS-CoV-2 spike. These antibodies prevented viral receptor engagement by locking the receptor-binding domain (RBD) of spike in the down conformation, revealing a mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but such mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Receptores Virais , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Nature ; 624(7992): 639-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871613

RESUMO

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.


Assuntos
Epitopos de Linfócito B , Receptores Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Imunogenicidade da Vacina , Mutação , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soros Imunes/imunologia
5.
Nature ; 608(7923): 603-608, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35790190

RESUMO

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Mutação , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Humanos , Imunização Secundária , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Nature ; 604(7906): 553-556, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240676

RESUMO

The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 20211 immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We2 and others3-6 recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. 2,3,5,6). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. 2-4,6). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Nature ; 602(7898): 676-681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016198

RESUMO

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Evolução Molecular , Humanos , Soros Imunes/imunologia , Concentração Inibidora 50 , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Nature ; 593(7857): 130-135, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684923

RESUMO

The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization1-3, and more treatments are under development4-7. Furthermore, multiple vaccine constructs have shown promise8, including two that have an approximately 95% protective efficacy against COVID-199,10. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3-12.4-fold). B.1.351 and emergent variants13,14 with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/terapia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Imunização Passiva , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/imunologia , Células Vero , Soroterapia para COVID-19 , Tratamento Farmacológico da COVID-19 , Vacinas de mRNA
9.
Nature ; 584(7821): 450-456, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32698192

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito B/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/análise , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Betacoronavirus/química , Betacoronavirus/ultraestrutura , COVID-19 , Infecções por Coronavirus/prevenção & controle , Microscopia Crioeletrônica , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/ultraestrutura , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Modelos Moleculares , Testes de Neutralização , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/ultraestrutura
10.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508705

RESUMO

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Assuntos
Epilepsias Parciais , Proteínas de Homeodomínio , Espasmos Infantis , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsias Parciais/genética , Epilepsias Parciais/tratamento farmacológico , Sequenciamento do Exoma , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Mutação , Espasmos Infantis/genética , Drosophila
11.
Proc Natl Acad Sci U S A ; 119(49): e2205013119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442102

RESUMO

Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Feminino , Gravidez , Animais , Camundongos , Cromatina/genética , Zika virus/genética , Infecção por Zika virus/genética , DNA , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica
12.
Nano Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954740

RESUMO

Nanosized ultrafine particles (UFPs) from natural and anthropogenic sources are widespread and pose serious health risks when inhaled by humans. However, tracing the inhaled UFPs in vivo is extremely difficult, and the distribution, translocation, and metabolism of UFPs remain unclear. Here, we report a label-free, machine learning-aided single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach for tracing the exposure pathways of airborne magnetite nanoparticles (MNPs), including external emission sources, and distribution and translocation in vivo using a mouse model. Our results provide quantitative analysis of different metabolic pathways in mice exposed to MNPs, revealing that the spleen serves as the primary site for MNP metabolism (84.4%), followed by the liver (11.4%). The translocation of inhaled UFPs across different organs alters their particle size. This work provides novel insights into the in vivo fate of UFPs as well as a versatile and powerful platform for nanotoxicology and risk assessment.

13.
Curr Issues Mol Biol ; 46(3): 1700-1712, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38534726

RESUMO

Vitamin K2 (MK-7) has been shown to cause significant changes in different physiological processes and diseases, but its role in acute lung injury (ALI) is unclear. Therefore, in this study, we aimed to evaluate the protective effects of VK2 against LPS-induced ALI in mice. The male C57BL/6J mice were randomly divided into six groups (n = 7): the control group, LPS group, negative control group (LPS + Oil), positive control group (LPS + DEX), LPS + VK2 (L) group (VK2, 1.5 mg/kg), and LPS + VK2 (H) group (VK2, 15 mg/kg). Hematoxylin-eosin (HE) staining of lung tissue was performed. Antioxidant superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, and the Ca2+ level in the lung tissue were measured. The effects of VK2 on inflammation, apoptosis, tight junction (TJ) injury, mitochondrial dysfunction, and autophagy were quantitatively assessed using Western blot analysis. Compared with the LPS group, VK2 improved histopathological changes; alleviated inflammation, apoptosis, and TJ injury; increased antioxidant enzyme activity; reduced Ca2+ overload; regulated mitochondrial function; and inhibited lung autophagy. These results indicate that VK2 could improve tight junction protein loss, inflammation, and cell apoptosis in LPS-induced ALI by inhibiting the mitochondrial dysfunction and excessive autophagy, indicating that VK2 plays a beneficial role in ALI and might be a potential therapeutic strategy.

14.
Anal Chem ; 96(1): 292-300, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141016

RESUMO

Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antibacterianos/farmacologia , Ouro , Calefação , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , DNA/genética , DNA/análise , Técnicas Biossensoriais/métodos
15.
Anal Chem ; 96(1): 145-153, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146268

RESUMO

Platelet size is a determinant of platelet function. Here, a new microfluidic deterministic cytometry packed with S-shaped micropillars (S-MDC) was developed to rapidly and sensitively determine the apparent size (Dapp) of platelets, which was used to evaluate platelet function. The platelet Dapp in the diluted whole blood was rapidly and label-freely measured by S-MDC within 2 min under shear rates (0.4 mm/s) that mimicked physiological conditions. The level of CD62p on platelets scarcely changed before and after platelets went through the whole S-MDC, indicating that the platelet function was nondestructive. Notably, the human platelet Dapp determined before and after thrombin addition by S-MDC was highly coincident with the levels of CD62p on the platelet surface by flow cytometry (r = 0.819), revealing that the human platelet Dapp was available to assess the platelet activation state. In addition, the results of the rat platelet Dapp were consistent with myocardial injury of rats with myocardial ischemia before and after treatment with antiplatelet agents, suggesting that rat platelet Dapp can be used to reflect myocardial injury in vivo outcomes. These findings reveal that S-MDC is a promising technique for screening tests for a bleeding disorder, in addition to monitoring antiplatelet drugs.


Assuntos
Plaquetas , Microfluídica , Humanos , Ratos , Animais , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Trombina , Citometria de Fluxo/métodos
16.
Anal Chem ; 96(18): 6995-7004, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666367

RESUMO

Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.


Assuntos
Química Click , Ouro , Lipopolissacarídeos , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Lipopolissacarídeos/análise , Humanos , Azidas/química , Limite de Detecção , Cobre/química , Alcinos/química , Aptâmeros de Nucleotídeos/química
17.
Radiology ; 311(1): e230459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563669

RESUMO

Background Microwave ablation (MWA) is currently under preliminary investigation for the treatment of multifocal papillary thyroid carcinoma (PTC) and has shown promising treatment efficacy. Compared with surgical resection (SR), MWA is minimally invasive and could preserve thyroid function. However, a comparative analysis between MWA and SR is warranted to draw definitive conclusions. Purpose To compare MWA and SR for preoperative US-detected T1N0M0 multifocal PTC in terms of overall and 1-, 3-, and 5-year progression-free survival rates and complication rates. Materials and Methods In this retrospective study, 775 patients with preoperative US-detected T1N0M0 multifocal PTC treated with MWA or SR across 10 centers between May 2015 and December 2021 were included. Propensity score matching (PSM) was performed for patients in the MWA and SR groups, followed by comparisons between the two groups. The primary outcomes were overall and 1-, 3-, and 5-year progression-free survival (PFS) rates and complication rates. Results After PSM, 229 patients (median age, 44 years [IQR 36.5-50.5 years]; 179 female) in the MWA group and 453 patients (median age, 45 years [IQR 37-53 years]; 367 female) in the SR group were observed for a median of 20 months (range, 12-74 months) and 26 months (range, 12-64 months), respectively. MWA resulted in less blood loss, shorter incision length, and shorter procedure and hospitalization durations (all P < .001). There was no evidence of differences in overall and 1-, 3-, or 5-year PFS rates (all P > .05) between MWA and SR (5-year rate, 77.2% vs 83.1%; P = .36) groups. Permanent hoarseness (2.2%, P = .05) and hypoparathyroidism (4.0%, P = .005) were encountered only in the SR group. Conclusion There was no evidence of a significant difference in PFS rates between MWA and SR for US-detected multifocal T1N0M0 PTC, and MWA resulted in fewer complications. Therefore, MWA is a feasible option for selected patients with multifocal T1N0M0 PTC. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Georgiades in this issue.


Assuntos
Micro-Ondas , Neoplasias da Glândula Tireoide , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Micro-Ondas/uso terapêutico , Estudos Retrospectivos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/cirurgia , Hospitalização , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia
18.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350837

RESUMO

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais , Sus scrofa , Vacinação , Imunidade Inata
19.
J Med Virol ; 96(2): e29411, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285434

RESUMO

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/genética , SARS-CoV-2/genética , Metilação de RNA , Capuzes de RNA
20.
Haematologica ; 109(7): 2165-2176, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235512

RESUMO

Sovleplenib (HMPL-523) is a selective spleen tyrosine kinase (Syk) inhibitor with anti-tumor activity in preclinical models of B-cell malignancy. We conducted a dose-escalation and dose-expansion phase I study of sovleplenib in patients with relapsed/ refractory mature B-cell tumors. Dose escalation followed a 3+3 design; patients received oral sovleplenib (200-800 mg once daily [q.d.] or 200 mg twice daily [b.i.d.], 28-day cycles). During dose expansion, patients were enrolled into four cohorts per lymphoma classification and treated at the recommended phase II dose (RP2D) (clinicaltrials gov. Identifier: NCT02857998). Overall, 134 Chinese patients were enrolled (dose escalation, N=27; dose expansion, N=107). Five patients experienced dose-limiting toxicities: one each of amylase increased (200 mg q.d.), febrile neutropenia (800 mg q.d.), renal failure (800 mg q.d.), hyperuricemia and blood creatine phosphokinase increased (200 mg b.i.d.) and blood bilirubin increased and pneumonia (200 mg b.i.d.). RP2D was determined as 600 mg (>65 kg) or 400 mg (≤65 kg) q.d.. The primary efficacy end point of independent review committee-assessed objective response rate in indolent B-cell lymphoma was 50.8% (95% confidence interval: 37.5- 64.1) in 59 evaluable patients at RP2D (follicular lymphoma: 60.5%, marginal zone lymphoma: 28.6%, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia, 0%). The most common (≥10% patients) grade ≥3 treatment-related adverse events in the dose-expansion phase were decreased neutrophil count (29.9%), pneumonia (12.1%) and decreased white blood cell count (11.2%). Pharmacokinetic exposures increased dose-proportionally with ascending dose levels from 200-800 mg, without observed saturation. Sovleplenib showed anti-tumor activity in relapsed/refractory B-cell lymphoma with acceptable safety. Further studies are warranted.


Assuntos
Linfoma de Células B , Inibidores de Proteínas Quinases , Quinase Syk , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Quinase Syk/antagonistas & inibidores , Idoso , Adulto , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Adulto Jovem , Idoso de 80 Anos ou mais , Resultado do Tratamento , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dose Máxima Tolerável , Pirazinas/administração & dosagem , Pirazinas/uso terapêutico , Pirazinas/farmacocinética , Pirazinas/efeitos adversos , Recidiva , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Indazóis , Morfolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA