Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Small ; 20(30): e2306823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38403873

RESUMO

The architectural window with spectrally selective features and radiative cooling is an effective way to save building energy consumption. However, architectural windows that combine both functions are currently based on micro-nano photonic structures, which undoubtedly hinder their commercial application due to the complexity of manufacture. Herein, a novel tunable visible light transmittance radiative cooling smart window (TTRC smart window) with perfect near-infrared (NIR) shielding ability is manufactured via a mass-producible scraping method. TTRC smart window presents high luminous transmittance (Tlum = 56.8%), perfect NIR shielding (TNIR = 3.4%), bidirectional transparency adjustment ability unavailable in other transparent radiative coolers based on photonic structures (ΔTlum = 54.2%), and high emittance in the atmospheric window (over 94%). Outdoor measurements confirm that smart window can reduce 8.2 and 6.6 °C, respectively, compared to ordinary glass and indium tin oxide (ITO) glass. Moreover, TTRC smart window can save over 20% of annual energy in the tropics compared to ITO and ordinary glass. The simple preparation method employed in this work and the superior optical properties of the smart window have significantly broadened the scope of application of architectural windows and advanced the commercialization of architectural windows.

2.
Phys Chem Chem Phys ; 26(24): 16998-17010, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38835203

RESUMO

An ab initio study of the rovibronic spectra for the cyano radical (CN) based on a diabatic representation is presented. This work considers 17 electronic states, 59 dipole moment curves, 88 spin-orbit coupling curves, and 30 electronic angular momentum coupling curves, which are obtained using the internally contracted multireference configuration interaction method including the Davidson correction (icMRCI + Q) with the aug-cc-pwCV5Z-DK basis set. The diabatic transformations are performed based on a property-based diabatization method to remove the avoided crossings for the D2Π-H2Π and b4Π-24Π pairs. Ab initio potential energy curves of the X2Σ+, B2Σ+, E2Σ+, A2Π, D2Π, H2Π, F2Δ and J2Δ electronic states are shifted to match the experimental electronic excitation energies and the equilibrium internuclear distances. The coupled nuclear motion Schrödinger equations are then solved to obtain the rovibronic spectra of CN for wavenumbers from 0 to 80 000 cm-1. At wavenumbers of 0-30 000 cm-1, our absorption cross sections agree well with available theoretical data. For wavenumbers above 30 000 cm-1, our cross sections are larger than previous data in view of the fact that the transitions involving high-lying electronic states are considered. This work provides an overall prediction of the rovibronic spectrum of CN. Our results are suitable for temperatures below 8000 K and could be useful for the investigations of planetary exploration.

3.
Phys Chem Chem Phys ; 26(21): 15569-15575, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757604

RESUMO

Iminosilylene (HNSi) has been observed in the laboratory and is expected to occur in the envelopes of carbon-rich stars. However, the lack of spectroscopic information for HNSi has hampered its further astrophysical detection. Using robust ab initio methods, we present the first and comprehensive molecular line list for HNSi (X 1Σ+). The new line list contains almost 3.36 billion transitions between 1.57 million levels with rotational excitation up to J = 160. It is suitable for temperatures up to 3000 K and covers the wavenumber range of 0-9000 cm-1 (wavelengths λ > 1.11 µm). This new line list can be helpful for the future spectroscopic characterization and molecular detection of HNSi in the laboratory and interstellar space.

4.
Phys Chem Chem Phys ; 26(22): 15957-15967, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38717797

RESUMO

The PNO molecule is an important species found in the interstellar medium, and its spectroscopic information is helpful for its detection. We present the first line list of PNO (X1Σ+) using robust first-principles methods. The analytical potential energy surface and the dipole moment surface were constructed based on 11 942 ab initio points. The variational nuclear motion calculation was implemented in TROVE to obtain the rovibrational energy levels, Einstein A coefficients and other parameters. The J-dependent Coriolis-decoupled Hamiltonian was adopted with k ≤ 15, and the l-type doubling was considered for the bending vibration of the linear molecule. The line list contained almost 5.87 billion transitions between 3.61 million levels with rotational excitation up to J = 200 and was used to generate the PNO spectrum below 3000 K in the wavenumber range from 0 to 6000 cm-1. The millimetre wave spectrum agrees well with available experimental benchmarks. The Fermi resonance effects in the PNO spectrum are universal and complex, resulting in significant intensity increment of the related weak transition. This line list may be helpful for the spectroscopic characterization and possible astronomical detection of PNO, especially in high-temperature environments.

5.
Phys Chem Chem Phys ; 26(16): 12838-12843, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38623625

RESUMO

Hydroboron monoxide (HBO) is expected to occur in envelopes of the asymptotic giant branch (AGB), but a lack of spectroscopic data is hampering its possible detection. Using the state-of-the-art ab initio method, we present the first, comprehensive molecular line list for HBO which is suitable for temperatures up to T = 3000 K. This new line list covers the wavenumber range of 0-9000 cm-1 (wavelengths of λ ≥ 1.11 µm), and it contains almost 75 million transitions between 435 631 energy levels with rotational excitation up to J = 120. The new line list of HBO can facilitate its future molecular detection in the laboratory and interstellar space.

6.
J Phys Chem A ; 128(27): 5260-5272, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38935921

RESUMO

Phosphaethyne (HCP) has been detected in circumstellar envelopes; its spectroscopic line list is helpful for modeling the relevant atmospheric opacity. We present the first comprehensive line list for HCP(X1Σ+) using robust first-principles methods. The analytical potential energy surface and dipole moment surface were constructed based on 26478 ab initio points from coupled-cluster calculations, along with the considerations of core-valence electron correlation and scalar relativistic effects. The variational nuclear motion program TROVE was used to obtain the ro-vibrational energy levels, Einstein A coefficients, and so on. The J-dependent Coriolis-decoupled Hamiltonian was adopted in the variational calculations with k ≤ 20, and the linear molecule treatment was applied to consider the l-type doubling of the bending vibration. The line list contains almost 0.45 billion transitions between 1.21 million levels with rotational excitation up to J = 200. It covers the wavenumber range of 0-9000 cm-1 (wavelengths above 1.11 µm) and is suitable for temperatures up to 3000 K. The millimeter wave spectra agree well with the experiments, and the Fermi resonance between 2v2 and v3 bands has been reproduced.

7.
Appl Opt ; 63(3): 681-691, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294380

RESUMO

Particle dispersed coatings with gradient distributions, resulting from either gravity or artificial control, are frequently encountered in practical applications. However, most current studies investigating the optical properties of coatings use the uniform model (uniform single layer assumption), overlooking the gradient distribution effects. Given the pervasiveness of gradient distributions and the widespread use of the uniform model, it is imperative to evaluate applicability conditions of the uniform model in practical applications. In this work, we comprehensively investigate the quantitative performance of the uniform model in predicting the infrared optical properties of coatings with gradient distributions of particle volume fraction using the superposition T-matrix method. The results show that the gradient distribution of particle volume fraction has a limited impact on the emissivity properties of T i O 2-PDMS coatings in the midwavelength-infrared (MWIR) and long-wavelength-infrared (LWIR) bands, which validates the uniform model for the gradient coatings with weakly scattering dielectric particles. However, the uniform model can yield significant inaccuracies in estimating the emissivity properties of Al-PDMS coatings with gradient distributions in the MWIR and LWIR bands. To accurately estimate the emissivity of such gradient coatings with the scattering metallic particles, meticulous modeling of the particle volume fraction distribution is essential.

8.
Environ Toxicol ; 39(4): 2092-2101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108535

RESUMO

BACKGROUND: Benzene and its metabolite hydroquinone (HQ) are widely used in daily life, and long-term exposure to benzene or HQ can induce acute myeloid leukemia (AML). Circular RNAs (circRNAs) are mostly produced by reverse splicing of gene exon mRNA precursors. The modulation of circRNA expression is connected to leukemia progression; however, the molecular mechanism is still unknown. MATERIALS AND METHODS: In this study, the cells were divided into four groups: PBS control group (PBS-TK6), TK6 malignantly transformed cells induced by 10.0 µmol/L HQ (HQ-TK6), and HQ-TK6 cells treated with 5 µmol/L 5-AzaC (DNA methyltransferase inhibitor) for 24 h (HQ + 5-AzaC). HQ-TK6 cells were treated with 200 nmol/L TSA (histone deacetylation inhibitor) for 24 h (HQ + TSA). qRT-PCR was used to identify the differential hsa_circ_401351 expression between the four groups. We further determined the hsa_circ_401351 promoter methylation level with methylation-specific PCR. DNMT1 and DNMT3b were knocked down by CRISPR/Cas9 to elucidate the specific molecular mechanism of hsa_circ_401351 in HQ-TK6 cells. CCK-8 and flow cytometry detected cell proliferation and apoptosis, respectively, after hsa_circ_401351 was overexpressed in HQ-TK6 cells. RESULTS: Compared with the PBS-TK6 group, the expression of hsa_circ_401351 was found to be lower in the HQ-TK6 group. Nevertheless, treatment with 5-AzaC or TSA increased hsa_circ_401351 expression, with the upregulation being more pronounced in the TSA group. The expression of hsa_circ_401351 in the DNMT1 knockdown group was dramatically increased by 50% compared to that in the control group, and the DNA methylation level of the hsa_circ_401351 promoter region was decreased. When hsa_circ_401351 was overexpressed, HQ-TK6 cell proliferation was significantly slowed after 48 h compared with the control group. Flow cytometry showed that cells were mainly arrested in G1 phase, and apoptosis was significantly enhanced. Similarly, qRT-PCR and Western blot data showed significant reductions in Caspase-3 mRNA and protein production, and Bcl-2 mRNA levels were also elevated. CONCLUSIONS: Overall, our research showed that elevated DNMT1 expression in HQ-TK6 cells increased methylation levels and decreased expression of the hsa_circ_401351 promoter region, limiting its ability to suppress HQ-TK6 cell growth and enhance apoptosis.


Assuntos
Metilação de DNA , MicroRNAs , Hidroquinonas/toxicidade , Benzeno , Proliferação de Células , RNA Mensageiro/metabolismo , MicroRNAs/genética , Apoptose/genética
9.
J Clin Pediatr Dent ; 48(1): 184-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239171

RESUMO

This study aims to examine the manifestations of dental anxiety (DA) and its influencing factors during dental visits among preschool children. The data of 166 preschool children who visited the Department of Dentistry of our hospital from April 2021 to April 2023 with oral problems were retrieved. Their DA performance was investigated using the Children's Fear Survey Schedule-Dental Subscale (CFSS-DS). In addition, based on their general data and potential risk factor information, we performed logistic regression analysis to identify the factors influencing DA. Of the 166 questionnaires distributed, a total of 160 valid questionnaires were retrieved. The average CFSS-DS score was 35.57 ± 3.51 points. Sixty-six children had DA, resulting in an incidence rate of 41.25%. The top 5 items with the highest CFSS-DS scores were fear of needles, dentists, tooth extraction, drilling and oral anesthesia. When the 66 children with DA were classified into a DA group and a non-DA group, we observed significant differences in age distribution, dental experience, only child status, general anxiety symptoms, dental condition, family income and specific dental treatment procedures, particularly tooth extraction, between them (p < 0.05). Multivariate logistic regression analysis revealed that preschool children aged ≤4 years, those with prior dental experiences, single-child status, general anxiety symptoms, suboptimal dental health, family incomes below 100,000 yuan/year, and those undergoing specific dental procedures, such as tooth extractions, were independently associated with a higher risk of DA (p < 0.05). The incidence of DA in preschool children is high, and they exhibit substantial fear of needles, dentists, tooth extraction, drilling and oral anesthesia. Preschool children aged ≤4 years, with prior dental experiences, single-child status, the presence of general anxiety symptoms, suboptimal dental health, family incomes below 100,000 yuan/year, and those undergoing dental procedures, particularly tooth extraction, could be more predisposed to DA.


Assuntos
Comportamento Infantil , Ansiedade ao Tratamento Odontológico , Transtornos Fóbicos , Humanos , Pré-Escolar , Criança , Ansiedade ao Tratamento Odontológico/epidemiologia , Ansiedade ao Tratamento Odontológico/diagnóstico , Assistência Odontológica , Extração Dentária , Inquéritos e Questionários
10.
Opt Express ; 31(8): 12357-12366, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157397

RESUMO

Ferroelectric BaTiO3 with an electric-field-switchable spontaneous polarization has attracted wide attention in photovoltaic applications due to its efficient charge separation for photoexcitation. The evolution of its optical properties with rising temperature especially across the ferroelectric-paraelectric phase transition is critical to peer into the fundamental photoexcitation process. Herein, by combining spectroscopic ellipsometry measurements with first-principles calculations, we obtain the UV-Vis dielectric functions of perovskite BaTiO3 at temperatures varying from 300 to 873 K and provide the atomistic insights into the temperature-driven ferroelectric-paraelectric (tetragonal-cubic) structural evolution. The main adsorption peak in dielectric function of BaTiO3 is reduced by 20.6% in magnitude and redshifted as temperature increases. The Urbach tail shows an unconventional temperature-dependent behavior due to the microcrystalline disorder across the ferroelectric-paraelectric phase transition and the decreased surface roughness at around 405 K. From ab initio molecular dynamics simulations, the redshifted dielectric function of ferroelectric BaTiO3 coincidences with the reduction of the spontaneous polarization at elevated temperature. Moreover, a positive (negative) external electric field is applied which can modulate the dielectric function of ferroelectric BaTiO3 blueshift (redshift) with a larger (smaller) spontaneous polarization since it drives the ferroelectric further away from (closer to) the paraelectric structure. This work sheds light on the temperature-dependent optical properties of BaTiO3 and provides data support for advancing its ferroelectric photovoltaic applications.

11.
Opt Express ; 31(20): 32214-32226, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859029

RESUMO

Extinction and attenuation by particles in an absorbing host have suffered a long-lasting controversy, which has impeded the physical insights on the radiative transfer in the voids dispersed composite. In this paper, we outline the existing extinction definitions, including an equivalence theorem neglecting the host absorption, the near-field analytical definition neglecting the far-field effects, and the operational way which simulates the actual detector readings. It is shown that, under the independent scattering approximation, the generalized operational definition is equivalent to a recent effective medium method according to the rigorous theory of multiple scattering. Using this generalized extinction, we show the important influences of the host absorption on the void extinction. Specifically, at the void resonance, the extinction cross sections of the small voids can be positive, zero, and even negative, which is regulated quantitively by host absorption. Considering the voids in SiC or Ag, the intriguing properties are verified through the attenuation coefficient calculated by the Maxwell-Garnett effective medium theory. In contrast, the equivalent theorem cannot describe any void resonance structures in the absorbing media. Also, the near-field definition fails to generate negative extinction and cannot thus describe the diminished total absorption by the voids. Our results might provide a better understanding of complex scattering theory in absorbing media.

12.
Opt Express ; 31(24): 40765-40780, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041369

RESUMO

ß-Ga2O3 as an ultra-wide bandgap material is widely used in space missions and nuclear reactor environments. It is well established that the physical properties of ß-Ga2O3 would be affected by radiation damage and temperature in such application scenarios. Defects are inevitably created in ß-Ga2O3 upon irradiation and their dynamic evolution is positively correlated with the thermal motion of atoms as temperature increases. This work utilizes first-principles calculations to investigate how temperature influences the electronic and optical properties of ß-Ga2O3 after radiation damage. It finds that the effect of p-type defects caused by Ga vacancies on optical absorption diminishes as temperature increases. The high temperature amplifies the effect of oxygen vacancies to ß-Ga2O3, however, making n-type defects more pronounced and accompanied by an increase in the absorption peak in the visible band. The self-compensation effect varies when ß-Ga2O3 contains both Ga vacancies and O vacancies at different temperatures. Moreover, in the case of Ga3- (O2+) vacancies, the main characters of p(n)-type defects caused by uncharged Ga0 (O0) vacancies disappear. This work aims to understand the evolution of physical properties of ß-Ga2O3 under irradiation especially at high temperatures, and help analyze the damage mechanism in ß-Ga2O3-based devices.

13.
J Chem Inf Model ; 63(10): 3005-3017, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37155923

RESUMO

BACKGROUND: Coronavirus disease-19 (COVID-19) pneumonia continues to spread in the entire globe with limited medication available. In this study, the active compounds in Chinese medicine (CM) recipes targeting the transmembrane serine protease 2 (TMPRSS2) protein for the treatment of COVID-19 were explored. METHODS: The conformational structure of TMPRSS2 protein (TMPS2) was built through homology modeling. A training set covering TMPS2 inhibitors and decoy molecules was docked to TMPS2, and their docking poses were re-scored with scoring schemes. A receiver operating characteristic (ROC) curve was applied to select the best scoring function. Virtual screening of the candidate compounds (CCDs) in the six highly effective CM recipes against TMPS2 was conducted based on the validated docking protocol. The potential CCDs after docking were subject to molecular dynamics (MD) simulations and surface plasmon resonance (SPR) experiment. RESULTS: A training set of 65 molecules were docked with modeled TMPS2 and LigScore2 with the highest area under the curve, AUC, value (0.886) after ROC analysis selected to best differentiate inhibitors from decoys. A total of 421 CCDs in the six recipes were successfully docked into TMPS2, and the top 16 CCDs with LigScore2 higher than the cutoff (4.995) were screened out. MD simulations revealed a stable binding between these CCDs and TMPS2 due to the negative binding free energy. Lastly, SPR experiments validated the direct combination of narirutin, saikosaponin B1, and rutin with TMPS2. CONCLUSIONS: Specific active compounds including narirutin, saikosaponin B1, and rutin in CM recipes potentially target and inhibit TMPS2, probably exerting a therapeutic effect on COVID-19.


Assuntos
COVID-19 , Inibidores de Serina Proteinase , Humanos , Tratamento Farmacológico da COVID-19 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Rutina , Serina Endopeptidases/química , Ressonância de Plasmônio de Superfície , Inibidores de Serina Proteinase/farmacologia
14.
Phys Chem Chem Phys ; 25(6): 4950-4958, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722882

RESUMO

Organic polymers have attracted widespread interest in various fields ranging from optic and optoelectronic devices to optical system design owing to their light weight, high machinability, excellent thermal performance and reasonable costs. The complex refractive index is an inherent property of organic polymers and directly affects the accuracy of optical system simulation. This study introduces a theoretical protocol to accurately predict the complex refractive indices of organic polymers in the 0-5000 cm-1 region for guiding the discovery and design of high-refractive index materials. In the proposed protocol, we computed the refractive indices of polymers with different monomer units using ab initio calculated static polarizability and mass density obtained by classical isothermal-isobaric ensemble simulations based on the Lorentz-Lorenz equation; we proposed a "Polymer Polarizability Fragment Segmentation" method to extrapolate the polarizabilities of polymers with longer chain lengths; meanwhile, the imaginary part of the dielectric functions of the polymers was calculated using the ab initio molecular dynamics (AIMD) method, and the real part of the dielectric functions was obtained using the Kramers-Kronig relation. We calculated the complex refractive indices of four commonly used organic polymers, i.e. polyethylene, polyvinyl chloride, polyvinyl alcohol and polylactic acid, to demonstrate the performance of the theoretical protocol. The approach combining ab initio and AIMD simulations is effective and economical to predict the complex refractive indices of organic polymers and other organic materials.

15.
Phys Chem Chem Phys ; 25(26): 17257-17263, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37340828

RESUMO

The discovery of ferroelectricity in the fluorite-structure HfO2 has attracted much interest in various applications including electro-optic devices and nonvolatile memories. Doping and alloying not only induce ferroelectricity in HfO2, but also significantly impact the thermal conduction which plays an essential role in the heat dissipation and thermal stability of ferroelectric devices. To understand and regulate the heat transfer in ferroelectric HfO2, it is crucial to investigate the thermal conduction properties of related fluorite-structure ferroelectrics so as to establish the structure-property relationship. In this work, using first-principles calculations, we investigate the thermal transport in twelve fluorite-structure ferroelectrics. We find an overall satisfactory agreement between the calculated thermal conductivities and those predicted by the simple theory of Slack. Among the family of fluorite-structure ferroelectrics, the transition-metal oxides HfO2 and ZrO2 have the highest thermal conductivities due to the strong interatomic bonding. We demonstrate that the spontaneous polarization, a feature specific to ferroelectrics, is positively correlated with the thermal conductivity, namely, the larger the spontaneous polarization, the larger the thermal conductivity. This is of chemical origin, namely, both the spontaneous polarization and the thermal conductivity are positively correlated to the "ionicity" of the ferroelectrics. We further find that the thermal conductivity is several times lower in the ferroelectric solid solution Hf1-xZrxO2 than in its pure counterparts, especially in the thin films where the finite size effect further suppresses thermal conduction. Our findings suggest the spontaneous polarization as a specific criterion for identifying ferroelectrics with desired thermal conductivities, which may promote the design and application of ferroelectrics.

16.
Phys Chem Chem Phys ; 25(9): 6746-6756, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807438

RESUMO

Nanoscale thermal transport at solid-liquid interfaces plays an essential role in many engineering fields. This work performs deep potential molecular dynamics (DPMD) simulations to investigate thermal transport across copper-water interfaces. Unlike traditional classical molecular dynamics (CMD) simulations, we independently train a deep learning potential (DLP) based on density functional theory (DFT) calculations and demonstrated its high computational efficiency and accuracy. The trained DLP predicts radial distribution functions (RDFs), vibrational densities of states (VDOS), density curves, and thermal conductivity of water confined in the nanochannel at a DFT accuracy. The thermal conductivity decreases slightly with an increase in the channel height, while the influence of the cross-sectional area is negligible. Moreover, the predicted interfacial thermal conductance (ITC) across the copper-water interface by DPMD is 2.505 × 108 W m-2 K-1, the same order of magnitude as the CMD and experimental results but with a high computational accuracy. This work seeks to simulate the thermal transport properties of solid-liquid interfaces with DFT accuracy at large-system and long-time scales.

17.
Phys Chem Chem Phys ; 25(14): 10175-10183, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976635

RESUMO

The exfoliated two-dimensional (2D) Ga2O3 opens new avenues to fine-tune the carrier and thermal transport properties for improving the electro-thermal performance of gallium oxide-based power electronics with their enhanced surface-to-volume ratios and quantum confinement. Yet, the carrier transport in 2D Ga2O3 has not been fully explored, especially considering their large Fröhlich coupling constants. Herein, we mainly investigate the electron mobility of monolayer (ML) and bilayer (BL) Ga2O3 from first-principles by adding polar optical phonon (POP) scattering. The results show that POP scattering is the dominant factor limiting the electron mobility for 2D Ga2O3, accompanied by a large 'ion-clamped' dielectric constant Δε. The value of Δε is 3.77 and 4.60 for ML and BL Ga2O3, respectively, indicating a large change in polarization in the external field. The electron mobility of 2D Ga2O3 enhances with increasing thickness despite the enhanced electron-phonon coupling strength and Fröhlich coupling constant. The predicted electron mobility for BL and ML Ga2O3 at a carrier concentration of 1.0 × 1012 cm-2 is 125.77 cm2 V-1 s-1 and 68.30 cm2 V-1 s-1 at room temperature, respectively. This work aims to unravel the scattering mechanisms beneath engineering electron mobility of 2D Ga2O3 for promising applications in high-power devices.

18.
Phys Chem Chem Phys ; 25(37): 25689-25700, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721446

RESUMO

The continuous development of advanced optical devices towards high performance, miniaturization and integration has led to an increasing demand for high refractive index optical materials. Nanocomposites - made from high refractive index inorganic nanoparticles and good processability polymers - combine the advantages of both materials to create a synergistic effect. However, the diversity and complexity of the composites make laboratory preparation less efficient. Therefore, to prepare composites that meet the refractive index requirements, it is essential to predict the effective optical properties at different wavelengths. This study proposes a finite element parametric retrieval (FEPR) method to calculate the effective complex refractive index of nanocomposites (meff). The effects of the ratio of film thickness to particle diameter, particle arrangement, particle volume fraction (fv) and particle diameter (d) on meff are considered. The results demonstrate that changing the spatial arrangement, volume fraction and diameter of the particles can cause changes in the scattering effect of particles or the interaction between the electromagnetic waves and the particles, resulting in changes in the meff. Compared with effective medium theory (EMT), the FEPR method can be used to characterise the meff values in complex cases through finite element parametric modelling. The FEPR method is an efficient and accurate method for predicting the effective optical properties of nanocomposites, and can also be applied to the design and development of materials to discover the factors influencing the properties and variation patterns from large amounts of data, and to obtain predictive models that can guide the design of new materials.

19.
J Biochem Mol Toxicol ; 37(2): e23262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424367

RESUMO

Conditionally reprogrammed cell (CRC) technique is a promising model for biomedical and toxicological research. In the present study, our data first demonstrated an increased level of PARP-1 in conditionally reprogrammed human foreskin keratinocytes (CR-HFKs). We then found that PARP inhibitor ABT-888 (ABT), reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), or combination (ABT + NAC) were able to inhibit cell proliferation, ROS, PARP-1, and ROS related protein, NRF2, and NOX1. Interestingly, knockdown of endogenous PARP-1 significantly inhibited cell proliferation, indicating that the increased PARP-1 expression was critical for CR. Importantly, we found that a moderate level of ROS contributed the cell proliferation and increased PARP-1 since knockdown of PARP-1 also inhibited the ROS. The similar inhibition of cell proliferation, ROS, and expression of PARP-1 and NRF2 proteins was observed when CR-HFKs were treated with hydroquinone (HQ), a key component from skin-lightening products. Moreover, the treatment of HQ plus treatment of ABT, NAC, or combination can further inhibit cell proliferation, ROS, expression of PARP-1, and NRF2 proteins. PARP-1 knockdown inhibited the population doubling (PDL) and treatment of HQ inhibited the PDL further, as well as the change of ROS. Finally, we discovered that pathways including cyclin D1, NRF2, Rb and pRb, CHK2, and p53, were involved in cell proliferation inhibition with HQ. Taken together, our findings demonstrated that crosstalk between ROS and PARP-1 involves in the cell proliferation in CR-HFKs, and that inhibition of CR-HFK proliferation with HQ is through modulating G1 cell cycle arrest.


Assuntos
Fator 2 Relacionado a NF-E2 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proliferação de Células , Queratinócitos/metabolismo , Apoptose
20.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37811827

RESUMO

Water dissociation on TiO2 surfaces has been known for decades and holds great potential in various applications, many of which require a proper understanding of thermal transport across the TiO2-H2O interface. Molecular dynamics (MD) simulations play an important role in characterizing complex systems' interfacial thermal transport properties. Nevertheless, due to the imprecision of empirical force field potentials, the interfacial thermal transport mechanism involving water dissociation remains to be determined. To cope with this, a deep potential (DP) model is formulated through the utilization of ab initio datasets. This model successfully simulates interfacial thermal transport accompanied by water dissociation on the TiO2 surfaces. The trained DP achieves a total energy accuracy of ∼238.8 meV and a force accuracy of ∼197.05 meV/Å. The DPMD simulations show that water dissociation induces the formation of hydrogen bonding networks and molecular bridges. Structural modifications further affect interfacial thermal transport. The interfacial thermal conductance estimated by DP is ∼8.54 × 109 W/m2 K, smaller than ∼13.17 × 109 W/m2 K by empirical potentials. The vibrational density of states (VDOS) quantifies the differences between the DP model and empirical potentials. Notably, the VDOS disparity between the adsorbed hydrogen atoms and normal hydrogen atoms demonstrates the influence of water dissociation on heat transfer processes. This work aims to understand the effect of water dissociation on thermal transport at the TiO2-H2O interface. The findings will provide valuable guidance for the thermal management of photocatalytic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA