Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Neural Netw ; 179: 106551, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39068675

RESUMO

Automatic electrocardiogram (ECG) classification provides valuable auxiliary information for assisting disease diagnosis and has received much attention in research. The success of existing classification models relies on fitting the labeled samples for every ECG type. However, in practice, well-annotated ECG datasets usually cover only limited ECG types. It thus raises an issue: conventional classification models trained with limited ECG types can only identify those ECG types that have already been observed in the training set, but fail to recognize unseen (or unknown) ECG types that exist in the wild and are not included in training data. In this work, we investigate an important problem called open-world ECG classification that can predict fine-grained observed ECG classes and identify unseen classes. Accordingly, we propose a customized method that first incorporates clinical knowledge into contrastive learning by generating "hard negative" samples to guide learning diagnostic ECG features (i.e., distinguishable representations), and then performs multi-hypersphere learning to learn compact ECG representations for classification. The experiment results on 12-lead ECG datasets (CPSC2018, PTB-XL, and Georgia) demonstrate that the proposed method outperforms the state-of-the-art methods. Specifically, our method achieves superior accuracy than the comparative methods on the unseen ECG class and certain seen classes. Overall, the investigated problem (i.e., open-world ECG classification) helps to draw attention to the reliability of automatic ECG diagnosis, and the proposed method is proven effective in tackling the challenges. The code and datasets are released at https://github.com/betterzhou/Open_World_ECG_Classification.

2.
Front Radiol ; 3: 1224682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38464946

RESUMO

At the dawn of of Artificial General Intelligence (AGI), the emergence of large language models such as ChatGPT show promise in revolutionizing healthcare by improving patient care, expanding medical access, and optimizing clinical processes. However, their integration into healthcare systems requires careful consideration of potential risks, such as inaccurate medical advice, patient privacy violations, the creation of falsified documents or images, overreliance on AGI in medical education, and the perpetuation of biases. It is crucial to implement proper oversight and regulation to address these risks, ensuring the safe and effective incorporation of AGI technologies into healthcare systems. By acknowledging and mitigating these challenges, AGI can be harnessed to enhance patient care, medical knowledge, and healthcare processes, ultimately benefiting society as a whole.

3.
Meta Radiol ; 1(3)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38344271

RESUMO

The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA