RESUMO
The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.
Assuntos
Replicação do DNA , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , MutaçãoRESUMO
The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.
Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismoRESUMO
Membrane properties are emerging as important cues for the spatiotemporal regulation of hormone signaling. Lysophosphatidic acid (LPA) evokes multiple biological responses by activating G protein-coupled receptors in mammals. In this study, we demonstrated that LPA derived from the mitochondrial glycerol-3-phosphate acyltransferases GPAT1 and GPAT2 is a critical lipid-based cue for auxin-controlled embryogenesis and plant growth in Arabidopsis thaliana. LPA levels decreased, and the polarity of the auxin efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane (PM) was defective in the gpat1 gpat2 mutant. As a consequence of distribution defects, instructive auxin gradients and embryonic and postembryonic development are severely compromised. Further cellular and genetic analyses revealed that LPA binds directly to PIN1, facilitating the vesicular trafficking of PIN1 and polar auxin transport. Our data support a model in which LPA provides a lipid landmark that specifies membrane identity and cell polarity, revealing an unrecognized aspect of phospholipid patterns connecting hormone signaling with development.
Assuntos
Arabidopsis , Ácidos Indolacéticos , Animais , Lisofosfolipídeos , Arabidopsis/genética , Desenvolvimento Vegetal , MamíferosRESUMO
Leptospirosis is a common but underdiagnosed zoonosis. We conducted a 1-year prospective study in La Guaira State, Venezuela, analyzing 71 hospitalized patients who had possible leptospirosis and sampling local rodents and dairy cows. Leptospira rrs gene PCR test results were positive in blood or urine samples from 37/71 patients. Leptospira spp. were isolated from cultured blood or urine samples of 36/71 patients; 29 had L. interrogans, 3 L. noguchii, and 4 L. venezuelensis. Conjunctival suffusion was the most distinguishing clinical sign, many patients had liver involvement, and 8/30 patients with L. interrogans infections died. The Leptospira spp. found in humans were also isolated from local rodents; L. interrogans and L. venezuelensis were isolated from cows on a nearby, rodent-infested farm. Phylogenetic clustering of L. venezuelensis isolates suggested a recently expanded outbreak strain spread by rodents. Increased awareness of leptospirosis prevalence and rapid diagnostic tests are needed to improve patient outcomes.
Assuntos
Surtos de Doenças , Leptospira , Leptospirose , Filogenia , Roedores , Animais , Leptospirose/epidemiologia , Leptospirose/veterinária , Leptospirose/microbiologia , Leptospirose/diagnóstico , Humanos , Venezuela/epidemiologia , Bovinos , Leptospira/genética , Leptospira/isolamento & purificação , Leptospira/classificação , Feminino , Roedores/microbiologia , Adulto , Masculino , Pessoa de Meia-Idade , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Adolescente , Leptospira interrogans/genética , Leptospira interrogans/isolamento & purificação , Leptospira interrogans/classificação , Adulto Jovem , Estudos Prospectivos , Criança , Idoso , Doenças Endêmicas , Zoonoses/epidemiologia , Zoonoses/microbiologia , Pré-EscolarRESUMO
The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.
Assuntos
Bandagens , Hidrogéis , Bactérias , Biofilmes , Movimento Celular , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Whole genome sequencing (WGS) can provide insight into drug-resistance, transmission chains and the identification of outbreaks, but data analysis remains an obstacle to its routine clinical use. Although several drug-resistance prediction tools have appeared, until now no website integrates drug-resistance prediction with strain genetic relationships and species identification of nontuberculous mycobacteria (NTM). We have established a free, function-rich, user-friendly online platform for MTB WGS data analysis (SAM-TB, http://samtb.szmbzx.com) that integrates drug-resistance prediction for 17 antituberculosis drugs, detection of variants, analysis of genetic relationships and NTM species identification. The accuracy of SAM-TB in predicting drug-resistance was assessed using 3177 sequenced clinical isolates with results of phenotypic drug-susceptibility tests (pDST). Compared to pDST, the sensitivity of SAM-TB for detecting multidrug-resistant tuberculosis was 93.9% [95% confidence interval (CI) 92.6-95.1%] with specificity of 96.2% (95% CI 95.2-97.1%). SAM-TB also analyzes the genetic relationships between multiple strains by reconstructing phylogenetic trees and calculating pairwise single nucleotide polymorphism (SNP) distances to identify genomic clusters. The incorporated mlstverse software identifies NTM species with an accuracy of 98.2% and Kraken2 software can detect mixed MTB and NTM samples. SAM-TB also has the capacity to share both sequence data and analysis between users. SAM-TB is a multifunctional integrated website that uses WGS raw data to accurately predict antituberculosis drug-resistance profiles, analyze genetic relationships between multiple strains and identify NTM species and mixed samples containing both NTM and MTB. SAM-TB is a useful tool for guiding both treatment and epidemiological investigation.
Assuntos
Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise de Dados , Resistência a Medicamentos , Filogenia , Sequenciamento Completo do Genoma/métodosRESUMO
Ammonium (NH4+) is a key inorganic nitrogen source in cellular amino acid biosynthesis. The coupling of transcriptional and posttranslational regulation of AMMONIUM TRANSPORTER (AMT) ensures that NH4+ acquisition by plant roots is properly balanced, which allows for rapid adaptation to a variety of nitrogen conditions. Here, we report that phospholipase D (PLD)-derived phosphatidic acid (PA) interacts with AMT1;1 to mediate NH4+ uptake in Arabidopsis (Arabidopsis thaliana). We examined pldα1 pldδ-knockout mutants and found that a reduced PA level increased seedling growth under nitrogen deficiency and inhibited root growth upon NH4+ stress, which was consistent with the enhanced accumulation of cellular NH4+. PA directly bound to AMT1;1 and inhibited its transport activity. Mutation of AMT1;1 R487 to Gly (R487G) resulted in abolition of PA suppression and, subsequently, enhancement of ammonium transport activity in vitro and in vivo. Observations of AMT1;1-GFP showed suppressed endocytosis under PLD deficiency or by mutation of the PA-binding site in AMT1;1. Endocytosis was rescued by PA in the pldα1 pldδ mutant but not in the mutant AMT1;1R487G-GFP line. Together, these findings demonstrated PA-based shutoff control of plant NH4+ transport and point to a broader paradigm of lipid-transporter function.
Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Compostos de Amônio/farmacologia , Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Ácidos Fosfatídicos/metabolismo , Raízes de Plantas/metabolismoRESUMO
The impact of APOE on HIV and HCV disease course, cognition, and memory has been understudied in minoritized populations. This study examined whether scores on cognition and depression measures differed by APOE ε4 carrier status while considering HCV and HIV seropositivity and whether these measures were moderated by substance use. A retrospective analysis examined cognitive and psychological data from participants (n = 493) in the Miami Adult Studies on HIV (MASH) cohort. APOE genotyping was performed on banked blood samples. Multiple linear regression was employed to examine differences across participants living with and without HIV and/or HCV and by APOE ε4 genotype. APOE ε4 carriers living with HCV who used cannabis had higher depression scores than non-ε4 carriers, while nonusers had fewer depressive symptoms. APOE ε4 carriers living with HCV had better cognition scores after adjusting for cocaine, opiate, and cannabis use than non-ε4 carriers. Scores on cognitive and depression measures did not differ between APOE ε4 carriers and non-ε4 carriers in participants living with HIV, and substance use did not moderate this relationship. This study was the first of its kind to examine substance use as a moderator for cognition and depression among individuals with HIV and/or HCV stratified by APOE genotype. Findings support further research evaluating the frequency and duration of 1) domains of cognitive functioning impacted by APOE genotype relevant to substance use and 2) the influence of substance use on cognitive and depressive outcomes among adults living with HIV and HCV, HIV, or HCV.
RESUMO
This study aimed to evaluate the correlation between measuring proton-density fat fraction (PDFF) in bone marrow using multi-echo chemical shift-encoded MRI and osteoporosis, assessing its effectiveness as a biomarker for osteoporosis. A systematic review was conducted by two independent researchers using Cochrane, PubMed, EMBASE, and Web of Science databases up to December 2023. Quality assessments were evaluated using the Cochrane risk of bias tool and the Agency for Healthcare Research and Quality (AHRQ) checklist. Fourteen studies involving 1495 patients were analyzed. The meta-analysis revealed a significant difference in PDFF values between the osteoporosis/osteopenia group and the normal control group, with a mean difference of 11.04 (95% CI: 9.17 to 12.92, Z=11.52, P < 0.00001). Measuring PDFF via MRI shows potential as an osteoporosis biomarker and may serve as a risk factor for osteoporosis. This insight opens new avenues for future diagnostic and therapeutic strategies, potentially improving osteoporosis management and patient care. OBJECTIVE: This study aims to assess the correlation between measuring proton-density fat fraction (PDFF) in bone marrow using multi-echo chemical shift-encoded MRI and osteoporosis, evaluating its effectiveness as a biomarker for osteoporosis. MATERIALS AND METHODS: This systematic review was carried out by two independent researchers using Cochrane, PubMed, EMBASE, and Web of Science databases up to December 2023. Quality assessments were evaluated using the Cochrane risk of bias tool and the Agency for Healthcare Research and Quality (AHRQ) checklist. RESULTS: Fourteen studies involving 1495 patients were analyzed. The meta-analysis revealed a significant difference in PDFF values between the osteoporosis/osteopenia group and the normal control group, with a (MD = 11.04, 95% CI: 9.17 to 12.92, Z = 11.52, P < 0.00001). Subgroup analyses indicated that diagnostic methods, gender, and echo length did not significantly impact the PDFF-osteoporosis association. CONCLUSION: PDFF measurement via MRI shows potential as an osteoporosis biomarker and may serve as a risk factor for osteoporosis. This insight opens new avenues for future diagnostic and therapeutic strategies, potentially improving osteoporosis management and patient care.
RESUMO
The liquid-liquid interface offers a confined space to control the growth of nanomaterials. In this study, Fe(II) (water phase) induced Meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) (CHCl3, organic phase) into nanoaggregates (Fe-TCPP) in the liquid-liquid interface. By tuning the ratio of DMF in organic solvents, Fe(II) induced H2TCPP into two nanoaggregates (Fe-TCPP-1 and Fe-TCPP-2) with different morphologies via coordination interaction occurring at the water-CHCl3 interface. Interestingly, the Fe-TCPP nanoaggregates possess dual enzyme-like activity (peroxidase-like and oxidase-like activity). In particular, both Fe-TCPP-1 and Fe-TCPP-2 demonstrate a peroxidase-/oxidase-like activity under visible light irradiation that is higher than that in the dark. Comparatively, Fe-TCPP-2 exhibits enhanced peroxide-like (POD) activity together with oxidase-like (OXD) activity compared with that of Fe-TCPP-1 under the corresponding similar conditions. The excellent enzyme mimic activity of Fe-TCPP nanozymes is ascribed to the generated hydroxyl radicals (·OH) and superoxide anions (O2â¢-). Remarkably, the catalytic activity of Fe-TCPP-2 remains more than 90% even in the higher temperature range of 35-40 °C, which is significant for biological detection under physiological conditions. Based on the outstanding dual enzyme-like activity of Fe-TCPP-2, a colorimetric sensing platform for methimazole (an antithyroid medicine) has been developed, demonstrating a linear detection range of 10-100 µM and a detection limit of 4.44 µM.
RESUMO
Exploring highly active nanozymes is an important task to realize the real-time detection of some heavy metal ions in water. In this work, yolk-shell Co3S4 microspheres have been verified to possess excellent peroxidase-like activity, which can be further improved by adding Hg2+. Very interestingly, Hg2+ can trigger "ON" the oxidase-like activity of Co3S4 microspheres. The dual peroxidase-/oxidase-like activity of the yolk-shell Co3S4 microspheres is evaluated by using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Furthermore, comprehensive studies verify that the enhanced peroxidase-like activity, together with the "ON" oxidase-like activity of the yolk-shell Co3S4 microspheres, is attributed to the in situ generation of HgS on the surface of Co3S4 microspheres and then the release of more active sites. Importantly, the in situ generated HgS on the surface of Co3S4 microspheres can form a heterojunction, which also accelerates the catalytic process. During the catalytic reaction, some active species (O2- and h+) can be detected by ESR. Thus, a colorimetric sensing platform based on Hg2+-triggered signal amplification has been successfully constructed, which can be validated by the detection of Hg2+ residue in environmental water.
Assuntos
Mercúrio , Oxirredutases , Microesferas , Mercúrio/química , Peroxidases , Água , Colorimetria , Peróxido de Hidrogênio/químicaRESUMO
Chitin-binding proteins (CBPs) play pivotal roles in numerous biological processes in arthropods, including growth, molting, reproduction, and immune defense. However, their function in the antibacterial immune defense of crustaceans remains relatively underexplored. In this study, twenty CBPs were identified and characterized in Penaeus vannamei. Expression profiling highlighted that the majority of CBPs were highly expressed in the intestine and hepatopancreas and responded to challenge by Vibrio parahaemolyticus. To explore the role of these CBPs in innate immunity, six CBPs (PvPrg4, PvKrtap16, PvPT-1a, PvPT-1b, PvExtensin and PvCP-AM1159) were selected for RNAi experiments. Silencing of only PvPrg4 and PvKrtap16 significantly decreased the cumulative mortality of V. parahaemolyticus-infected shrimp. Further studies demonstrated that inhibition of PvPrg4 and PvKrtap16 resulted in a marked upregulation of genes associated with the NF-κB and JAK-STAT signaling pathways, as well as antimicrobial peptides (AMPs), in both the intestine and hepatopancreas. These results collectively suggested that PvPrg4 and PvKrtap16 potentially promote V. parahaemolyticus invasion by negatively regulating the JAK-STAT and NF-κB pathways, thereby inhibiting the expression of AMPs. In addition, SNP analysis identified three SNPs in the exons of PvPrg4 that were significantly associated with tolerance to V. parahaemolyticus. Taken together, these findings are expected to assist in the molecular marker-assisted breeding of P. vannamei associated with anti-V. parahaemolyticus traits, as well as expand our understanding of CBP functions within the immune regulatory system of crustaceans.
RESUMO
During its global dispersal, Mycobacterium tuberculosis (Mtb) has encountered varied geographic environments and host populations. Although local adaptation seems to be a plausible model for describing long-term host-pathogen interactions, genetic evidence for this model is lacking. Here, we analyzed 576 whole-genome sequences of Mtb strains sampled from different regions of high-altitude Tibet. Our results show that, after sequential introduction of a few ancestral strains, the Tibetan Mtb population diversified locally while maintaining strict separation from the Mtb populations on the lower altitude plain regions of China. The current population structure and estimated past population dynamics suggest that the modern Beijing sublineage strains, which expanded over most of China and other global regions, did not show an expansion advantage in Tibet. The mutations in the Tibetan strains showed a higher proportion of A > G/T > C transitions than strains from the plain regions, and genes encoding DNA repair enzymes showed evidence of positive selection. Moreover, the long-term Tibetan exclusive selection for truncating mutations in the thiol-oxidoreductase encoding sseA gene suggests that Mtb was subjected to local selective pressures associated with oxidative stress. Collectively, the population genomics of Mtb strains in the relatively isolated population of Tibet provides genetic evidence that Mtb has adapted to local environments.
Assuntos
Adaptação Biológica/genética , Adaptação Fisiológica/genética , Mycobacterium tuberculosis/genética , Aclimatação/genética , Altitude , Evolução Biológica , China , Genótipo , Mutação , Mycobacterium tuberculosis/metabolismo , Filogenia , Dinâmica Populacional/tendências , Seleção Genética/genética , Tibet/epidemiologiaRESUMO
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from ß-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Assuntos
Ácidos Graxos/metabolismo , Lipogênese/fisiologia , Mycobacterium marinum/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Lipólise , Metabolismo/fisiologia , Modelos Animais , Mycobacterium/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/fisiopatologia , Oxirredução , Fatores de Transcrição/metabolismo , Virulência/fisiologia , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologiaRESUMO
BACKGROUND: Long-term prognosis remains poor for colorectal cancer (CRC) patients with advanced disease due to treatment resistance. The identification of novel targets is essential for the development of new therapeutic approaches. GPR56, an adhesion GPCR, is highly expressed in CRC tumours and correlates with poor survival. Here, we describe the generation and preclinical evaluation of a novel ADC consisting of an anti-GPR56 antibody (10C7) conjugated with the DNA-damaging payload duocarmycin. METHODS: RNA-seq dataset analysis was performed to determine GPR56 expression in CRC subtypes. The specificity of binding, epitope mapping, and internalisation of 10C7 was examined. 10C7 was conjugated to payload and ADC cytotoxicity was assessed against a panel of CRC cell lines and tumour organoids. Antitumour efficacy was evaluated in xenograft models of CRC cell lines and patient-derived tumours. RESULTS: High GPR56 was shown to be associated with the microsatellite stable (MSS) subtype that accounts for 80-85% of CRC. GPR56 ADC selectively induced cytotoxicity in CRC cells and tumour organoids at low nanomolar potency in a GPR56-dependent manner and showed significant antitumour efficacy against GPR56-expressing xenograft models. CONCLUSIONS: This study provides the rationale for the future development of a GPR56-targeted ADC approach to potentially treat a large fraction of MSS CRC patients.
Assuntos
Neoplasias Colorretais , Imunoconjugados , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Prognóstico , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Chronic systemic inflammation leads to sever disorders and diseases. It is of great importance to explore novel target for effective treatment. Discoidin domain receptor 2 (Ddr2) is a member of receptor tyrosine kinase (RTK) family and is implicated in skeletal and fat hemostasis. However, the role of Ddr2 in myeloid cells remains obscure. In this study, we conditionally deleted Ddr2 in myeloid lineage cells to generate cKO mice to investigate the role of Ddr2 in myeloid lineage cells. We found that cKO mice exhibited more severe inflammation both in collagen antibody-induced arthritis (CAIA) and high-fat diet (HFD)-induced obesity, indicating the protective role of Ddr2 against inflammation. Mechanistically, Ddr2 promotes macrophage repolarization from the M1 to M2 phenotype, and protect against systemic inflammation. Our study reveals for the first time that Ddr2 modulates macrophage repolarization and plays critical roles in macrophage-mediated inflammation, providing potential target for the intervention of inflammation and related diseases.
Assuntos
Artrite , Receptor com Domínio Discoidina 2 , Animais , Camundongos , Dieta Hiperlipídica , Receptor com Domínio Discoidina 2/genética , Receptores com Domínio Discoidina , Inflamação , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genéticaRESUMO
It is desirable to improve the methanol oxidation ability of heterojunction catalysts because of their potential in the field of electrocatalysis. In this article, we have integrated CuO/Co3O4 heterojunction with porphyrin (TCPP) for TCPP/Cu2Co1. The results demonstrate that the specific surface area and electrochemical active surface area (ECSA) are enhanced, and the unblocked separation and transfer of photogenerated charges are guaranteed by the matched band energy of CuO, Co3O4, and TCPP. As such, the photocatalytic methanol oxidation reaction (MOR) performance and stability of TCPP/Cu2Co1 are significantly enhanced compared with those of Cu2Co1. This study provides a promising pathway for the design of MOR catalysts with high MOR activity.
RESUMO
Antioxidants are considered as essential compounds for monitoring human health. In this work, a colorimetric sensor array was developed using oxidase-like (OXD) and peroxidase-like (POD) activities of Co3O4 nanoflowers as sensing elements, together with a substrate, 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), as a signal reader to effectively identify different antioxidants. In the presence of Co3O4, colorless TMB can be oxidized into blue oxTMB to different degrees in the presence and absence of H2O2. Interestingly, after the addition of antioxidants, the sensor array showed cross-reactions, and different changes in color and absorbance were observed, as TMB and antioxidants competed for binding. Different colorimetric responses were obtained on the sensor array and identified by linear discriminant analysis (LDA). The LDA result indicated that the sensor array can be used to distinguish 4 antioxidants, namely, dopamine (DA), glutathione (GSH), ascorbic acid (AA), and cysteine (Cys) at seven different concentrations, namely, 10, 20, 30, 50, 100, 200, and 250 nM. Different concentrations of antioxidants and proportions of mixed antioxidants were determined. This demonstrates the potential application of sensor arrays in diagnosis and food monitoring.
Assuntos
Antioxidantes , Colorimetria , Humanos , Antioxidantes/análise , Peróxido de Hidrogênio , Óxidos/química , Glutationa/análise , OxirredutasesRESUMO
Exploring highly active peroxidase mimics at physiological pH is important for the construction of efficient and convenient colorimetric sensing platforms for detecting small biomolecules. In this work, prepared zinc pyrovanadate (Zn3V2O7(OH)2·2H2O) nanorods exhibit excellent peroxidase-like activity, which is verified by the fast oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) by H2O2 at physiological pH (pH = 7) in 2 min. In addition, the catalytic behaviors of Zn3V2O7(OH)2·2H2O as a peroxidase-like nanozyme conform to the Michaelis-Menten equation. Scavenger experiments prove that the catalytic activity of Zn3V2O7(OH)2·2H2O is ascribed to ËO2- radicals generated in the process of catalysis. Based on the peroxidase-like activity of the Zn3V2O7(OH)2·2H2O nanozyme, a fast and convenient colorimetric sensor has been constructed to detect H2O2 and epinephrine (EP) under physiological pH. The detection limit of EP is as low as 0.26 µM. In addition, the feasibility of the proposed sensor has been validated to detect H2O2 in milk and EP in serum.
Assuntos
Colorimetria , Nanotubos , Peróxido de Hidrogênio/química , Zinco , Peroxidase/química , Peroxidases/química , Corantes/química , Epinefrina , Concentração de Íons de HidrogênioRESUMO
Alcohol oxidation reactions are known to be significant in the advancement of sustainable, renewable energy sources. Searching for catalytic materials with powerful, reliable, and economic performance is of great importance. Due to their excellent intrinsic performance, outstanding stability, and inexpensiveness, ultrathin layered double hydroxides (LDHs) are considered to be competitive electrocatalysts. However, the electrocatalytic property of ultrathin LDHs is still confined by the predominant exposure of the (003) basal plane. Hence, we have engineered active edge facets in ultrathin NiCo-LDHs, which possess abundant oxygen vacancies (VO), by a facile one-step strategy. Experimental results show that NiCo-LDH-E synthesized in ethanol demonstrates an ultrathin structure, rich oxygen vacancies, and more active facets, exhibiting a higher electrochemical active area of 3.25 cm2, which is 1.18 times that of NiCo-LDH-W (2.75 cm2). In addition, the current density of NiCo-LDH-E in methanol and ethanol oxidation reactions could reach 159.5 and 136.3 mA cm-2, which are 2.8 and 1.7 times that of NiCo-LDH-W, respectively.