Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Am Chem Soc ; 146(29): 19874-19885, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007743

RESUMO

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.


Assuntos
Aptâmeros de Nucleotídeos , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas , Aptâmeros de Nucleotídeos/química , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/sangue , Proteoma/análise , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais/sangue , Nanopartículas de Magnetita/química , Coroa de Proteína/química
2.
Anal Chem ; 96(5): 2059-2067, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258754

RESUMO

Human respiratory adenovirus (ADV) is a highly infectious respiratory virus with potential for pandemics. There are currently no specific drugs to treat ADV worldwide, so early rapid detection of ADV infection is essential. In this study, we developed an innovative magnetic-optical triple-mode lateral flow immunoassay (LFIA) using magnetic quantum dots as immunomarkers. This novel approach addresses the need for rapid and accurate ADV detection, allowing for multimodal quantitative/semiquantitative analysis of magnetic, fluorescent, and visible signals within a mere 15 min. The lower limit of detection (LOD) for magnetic, fluorescent, and visual signals was determined to be 5.6 × 103, 1.2 × 103, and 1.95 × 104 copies/mL, respectively. The detection range for ADV using this approach was 1.2 × 103-5 × 107 copies/mL. Additionally, semiquantitative analysis, which is user-friendly and does not necessitate specialized equipment, was successfully implemented. Notably, seven respiratory viruses showed no cross-reactivity with the generated LFIA test strips. The intrabatch repeatability exhibited a coefficient of variation (CV) of less than 5%, while the interbatch repeatability had a CV of less than 15%. Furthermore, recovery values ranged from 95% to 106.8% for samples analyzed concurrently with dual signals at the same spiking concentration. The assay developed in this study boasts a wide detection range and exceptional sensitivity and specificity. This technique is exceptionally well-suited for on-site rapid detection, with the potential for personal self-testing and early ADV infection diagnosis. Its versatility extends to a broad array of application scenarios.


Assuntos
Adenoviridae , Fenômenos Magnéticos , Humanos , Imunoensaio/métodos , Sensibilidade e Especificidade , Limite de Detecção
3.
Electrophoresis ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549469

RESUMO

The genetic identification of skeletal remains from Chinese People's Volunteers (CPVs) of the Korean War has been challenging because of the degraded DNA samples and the lack of living close relatives. This study established a workflow for identifying CPVs by combining Y-chromosome short tandem repeats (Y-STRs), mitochondrial DNA (mtDNA) hypervariable regions I and II, autosomal STRs (aSTRs), and identity-informative SNPs (iiSNPs). A total of 20 skeletal remains of CPVs and 46 samples from their alleged relatives were collected. The success rate of DNA extraction from human remains was 100%. Based on Y-STRs, six remains shared the same male lineages with their alleged relatives. Meanwhile, mtDNA genotyping supports two remains sharing the same maternal lineages with their alleged relatives. Likelihood ratios (LRs) were further obtained from 27 aSTRs and 94 iiSNPs or 1936 iiSNPs to confirm their relationship. All joint pedigree LRs were >100. Finally, six remains were successfully identified. This pilot study for the systematic genetic identification of CPVs from the Korean War can be applied for the large-scale identification of CPVs in the future.

4.
Mikrochim Acta ; 191(2): 104, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236334

RESUMO

A lateral flow assay (LFA) strip based on dual 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB)-encoded satellite Fe3O4@Au (Mag@Au) SERS tags with nanogap is reported for  ultrasensitive and simultaneous diagnosis of two SARS-CoV-2 functional proteins. Composed of Fe3O4 core, satellite gold shell with nanogaps, and double-layer DTNB, the Mag@Au nanoparticles with an average size of 238 nm were designed as multifunctional tags to efficiently enrich the target SARS-CoV-2 protein from complex samples, significantly enhancing the SERS signal of the LFA strip and provide quantitative SERS detection of analyte on test lines. The developed dual DTNB-encoded satellite Mag@Au-based LFA allowed simultaneous quantification of spike (S) protein and nucleocapsid (NP) protein with detection limits of 23 pg mL-1 and 2 pg mL-1, respectively, lower than commercial ELISA kits and reported SERS-LFA detection system-based Au NPs and Fe3O4@3 nm Au MNPs. This magnetic SERS-LFA also showed high performance of multi-variant strain detection and further distinguished clinical samples of Omicron variant infection, demonstrating the potential of in situ detection of respiratory virus diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Ácido Ditionitrobenzoico , Ouro , SARS-CoV-2
5.
Angew Chem Int Ed Engl ; : e202408765, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797705

RESUMO

Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 µm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers. The PdBi 2D MNWNs affords the highest specific activity for formic acid (2669.1 mA mg-1) among current unsupported catalysts, which is 103.5 times higher than Pt-black, respectively. Furthermore, in situ Fourier transform infrared (FTIR) experiments provide comprehensive evidence that PdBi 2D MNWNs catalysts can effectively prevent CO* poisoning, resulting in exceptional activity and stability for the oxidation of formic acid.

6.
Eur Radiol ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875593

RESUMO

OBJECTIVES: The study of postoperative liver decompensation after microwave ablation (MWA) for hepatocellular carcinoma (HCC) in patients with clinically significant portal hypertension (CSPH) is still lacking. The purpose of the present study was to compare the postoperative liver decompensation after MWA and laparoscopic resection (LR) for HCC in patients with CSPH. METHODS: The present retrospective study enrolled 222 HCC patients with CSPH who underwent MWA (n = 67) or LR (n = 155). Postoperative liver decompensation, complications, postoperative hospital stays, and overall survival were analyzed. Factors associated with postoperative liver decompensation were identified. RESULTS: After propensity score matching, the postoperative liver decompensation rate was significantly lower in the MWA group than that in the LR group (15.5% versus 32.8%, p = 0.030). The multivariable regression analysis identified that type of treatment (MWA vs. LR, odds ratio [OR] 0.44; 95% confidence interval [CI], 0.21-0.91; p = 0.026) and Child-Pugh B (OR, 2.86; 95% CI, 1.24-6.61; p = 0.014) were independent predictors for postoperative liver decompensation. The rate of complications for patients in the MWA group was significantly lower than that in the LR group (p < 0.001). And MWA showed shorter postoperative hospital stays than LR (3 days vs. 6 days, p < 0.001). Overall survival rate between the two groups was not significantly different (p = 0.163). CONCLUSION: Compared with laparoscopic resection, microwave ablation has a lower rate of postoperative liver decompensation and might be a better option for HCC patients with CSPH. CLINICAL RELEVANCE STATEMENT: Microwave ablation exhibited a lower incidence of postoperative liver decompensation in comparison to laparoscopic resection, thereby conferring greater advantages to hepatocellular carcinoma patients with clinically significant portal hypertension. KEY POINTS: •Postoperative liver decompensation rate after microwave ablation was lower than that of laparoscopic resection for hepatocellular carcinoma in patients with clinically significant portal hypertension. •Microwave ablation showed shorter postoperative hospital stays than laparoscopic resection. •Microwave ablation had fewer complications than laparoscopic resection.

7.
Int J Med Sci ; 20(3): 318-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860671

RESUMO

Hepatocellular carcinoma (HCC) is the most common and malignant liver tumor worldwide, although the treatment approaches for HCC continue to evolve, metastasis is the main reason for high mortality rates. S100 calcium-binding protein A11 (S100A11), an important member of the S100 family of small calcium-binding proteins, is overexpressed in various cells and regulates tumor development and metastasis. However, few studies report the role and underlying regulatory mechanisms of S100A11 in HCC development and metastasis. Herein, we discovered that S100A11 is overexpressed and associated with poor clinical outcomes in HCC cohorts, and we provided the first demonstration that S100A11 could serve as a novel diagnostic biomarker used in conjunction with AFP for HCC. Further analysis implied that S100A11 outperforms AFP in determining whether HCC patients have hematogenous metastasis or not. Using in vitro cell culture model, we demonstrated that S100A11 is overexpressed in metastatic hepatoma cells, knockdown of S100A11 decreases hepatoma cells proliferation, migration, invasion, and epithelial-mesenchymal transition process by inhibiting AKT and ERK signaling pathways. Altogether, our study provides new sights into the biological function and mechanisms underlying S100A11 in promoting metastasis of HCC and explores a novel target for HCC diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Proteínas Proto-Oncogênicas c-akt , alfa-Fetoproteínas/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Transdução de Sinais/genética , Proteínas S100/genética
8.
Mediators Inflamm ; 2023: 9330439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643585

RESUMO

In this study, we examined the effect of the GP130-targeting molecule, LMT-28, on lipopolysaccharide- (LPS-) induced bone resorption around implants in diabetic models using in vitro and rat animal experiments. First, LMT-28 was added to osteoblasts stimulated by LPS and advanced glycation end products (AGEs), and nuclear factor-κB receptor-activating factor ligand (RANKL) and associated pathways were evaluated. Then, LMT-28 was administered by gavage at 0.23 mg/kg once every 5 days for 2 weeks to type 2 diabetic rats with peri-implantitis induced by LPS injection and silk ligature. The expression of IL-6 and RANKL was evaluated by immunohistochemistry, and the bone resorption around implants was evaluated by microcomputed tomography. The results showed that LMT-28 downregulated the expression of RANKL through the JAK2/STAT3 signaling pathway in osteoblasts stimulated by LPS and AGEs, reduced bone resorption around implants with peri-implantitis, decreased the expression of IL-6 and RANKL, and decreased osteoclast activity in type 2 diabetic rats. This study confirmed the ability of LMT-28 to reduce LPS-induced bone resorption around implants in diabetic rats.


Assuntos
Reabsorção Óssea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Peri-Implantite , Animais , Ratos , Reabsorção Óssea/metabolismo , Receptor gp130 de Citocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos , Osteoclastos/metabolismo , Peri-Implantite/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Microtomografia por Raio-X
9.
J Environ Manage ; 332: 117347, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708600

RESUMO

Scientific assessment of the historical carbon peak situation of provincial buildings in China is the premise and basis for understanding the country's development trends and formulating carbon peak goals. The population size, urbanization stages, economic development levels, natural resources endowment, and energy structure characteristics vary significantly for the different provinces in China, resulting in significant differences in the peaking situation of building carbon emissions (BCE). The differences require more attention given the current environmental status. Based on the judgment function of carbon peaking conditions and the statistical Mann-Kendall (MK) trend test method, this study evaluates the historical peak situation of building carbon emissions at the provincial level in China. The peaking sequence of BCE, building carbon emissions per capita (BCEP), and carbon emissions per unit floor area (BCEA) were analyzed, and the driving factors that cause different carbon peak situations were discussed. Further, with reference to the experience of the United States, a peak strategy for building carbon emissions in China was proposed. The research results showed that BCE in Beijing and Yunnan have peaked, and the three provinces of Shanghai, Sichuan, and Hubei have plateaued. The most important factors that cause different peaking situations for BCE are the floor area per capita and carbon emissions per unit of energy consumption. In addition, the peak order of building carbon emissions was BCEA, BCEP, and BCE. A strategy that should be adopted in the promotion of buildings' carbon peak in China is to formulate phased peak goals for BCE, BCEP, and BCEA at a national level and differentiated echelon peak goals at a provincial level considering interprovincial differences. This study provides a scientific basis and decision-making reference for formulating a path to buildings' carbon peak at a provincial level in China.


Assuntos
Dióxido de Carbono , Carbono , Carbono/análise , China , Dióxido de Carbono/análise , Pequim , Desenvolvimento Econômico
10.
Entropy (Basel) ; 25(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895509

RESUMO

Social recommender systems are expected to improve recommendation quality by incorporating social information when there is little user-item interaction data. Therefore, how to effectively fuse interaction information and social information becomes a hot research topic in social recommendation, and how to mine and exploit the heterogeneous information in the interaction and social space becomes the key to improving recommendation performance. In this paper, we propose a social recommendation model based on basic spatial mapping and bilateral generative adversarial networks (MBSGAN). First, we propose to map the base space to the interaction and social space, respectively, in order to overcome the issue of heterogeneous information fusion in two spaces. Then, we construct bilateral generative adversarial networks in both interaction space and social space. Specifically, two generators are used to select candidate samples that are most similar to user feature vectors, and two discriminators are adopted to distinguish candidate samples from high-quality positive and negative examples obtained from popularity sampling, so as to learn complex information in the two spaces. Finally, the effectiveness of the proposed MBSGAN model is verified by comparing it with both eight social recommendation models and six models based on generative adversarial networks on four public datasets, Douban, FilmTrust, Ciao, and Epinions.

11.
Small ; 18(39): e2202145, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36026572

RESUMO

Enzymes are an important component for bottom-up building of synthetic/artificial cells. Nanozymes are nanomaterials with intrinsic enzyme-like properties, however, the construction of synthetic cells using nanozymes is difficult owing to their high surface energy or large size. Herein, the authors show a protein-based general platform that biomimetically integrates various ultrasmall metal nanozymes into protein shells. Specifically, eight metal-based ultrasmall nano-particles/clusters are in situ incorporated into ferritin nanocages that are self-assembled by 24 subunits of ferritin heavy chain. As a nanozyme generator, such a platform is suitable for screening the desired enzyme-like activities, including peroxidase (POD), oxidase (OXD), catalase (CAT) and superoxide dismutase (SOD). After screening, it is found that Ru intrinsically possesses the highest POD-like and CAT-like activities, while Mn and Pt show the highest OXD-like and SOD-like activities, respectively. Additionally, the inducers/inhibitors of various nanozymes are screened from more than 50 compounds to improve or inhibit their enzyme-like activities. Based on the screened nanozymes and their inhibitors, a proof-of-conceptually constructs cell-mimicking catalytic vesicles to mimic or modulate the events of redox homeostasis in living cells. This study offers a type of artificial metalloenzyme based on nanotechnology and shows a choice for bottom-up enzyme-based synthetic cell systems in a fully synthetic manner.


Assuntos
Apoferritinas , Nanoestruturas , Catalase , Catálise , Ferritinas , Peroxidase , Peroxidases , Superóxido Dismutase
12.
Anal Biochem ; 650: 114711, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561816

RESUMO

BACKGROUND: TaqMan probe-based real-time PCR (qPCR/RT-qPCR) has been widely used in various fields because of its high sensitivity and specificity. However, TaqMan probes are associated with a relatively higher background signal, and hence negatively affect the detection results. METHODS: Double-stranded probes (DSPs) were designed for the high sensitive detection of hepatitis B virus (HBV) DNA and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA using qPCR/RT-qPCR. Old DSPs (ODSPs) consist of different lengths of positive and negative strands with complementary oligonucleotides. We systematically optimized ODSPs length, the free energy of hybridization (ΔG) between complementary oligonucleotides, and the length of sticky ends, and the novel DSPs performances were evaluated in comparison with other types of probes. RESULTS: By using similar length positive and negative strands, controlling ΔG between complementary oligonucleotides to approximately -30 kcal/mol, and maintaining the sticky end length at 4-6 nt, the analytical performances of DSPs were significantly improved. Compared with other types of probes, DSPs are advantageous in fluorescence signal intensity and sensitivity. CONCLUSION: DSPs can further improve the detection sensitivity and the detection rate of low-concentration samples in molecular diagnosis.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Oligonucleotídeos , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
13.
J Nanobiotechnology ; 20(1): 279, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701788

RESUMO

Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although significant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy. However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Meanwhile, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic acid drugs.


Assuntos
Exossomos , Neoplasias , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno
14.
J Nanobiotechnology ; 20(1): 386, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999547

RESUMO

The colonization of bacterial pathogens is a major concern in wound infection and becoming a public health issue. Herein, a core-shell structured Ag@MSN (silver core embedded with mesoporous silica, AM)-based nanoplatform was elaborately fabricated to co-load ciprofloxacin (CFL) and tumor necrosis factor-α (TNF-α) small interfering RNA (siTNF-α) (AMPC@siTNF-α) for treating the bacterial-infected wound. The growth of bacterial pathogens was mostly inhibited by released silver ions (Ag+) and CFL from AMPC@siTNF-α. Meanwhile, the loaded siTNF-α was internalized by macrophage cells, which silenced the expression of TNF-α (a pro-inflammatory cytokine) in macrophage cells and accelerated the wound healing process by reducing inflammation response. In the in vivo wound model, the Escherichia coli (E. coli)-infected wound in mice almost completely disappeared after treatment with AMPC@siTNF-α, and no suppuration symptom was observed during the course of the treatment. Importantly, this nanoplatform had negligible side effects both in vitro and in vivo. Taken together, this study strongly demonstrates the promising potential of AMPC@siTNF-α as a synergistic therapeutic agent for clinical wound infections.


Assuntos
Nanopartículas Metálicas , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli , Camundongos , RNA Interferente Pequeno/farmacologia , Dióxido de Silício/farmacologia , Prata/farmacologia , Fator de Necrose Tumoral alfa , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
15.
J Card Surg ; 37(11): 3995-4001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057976

RESUMO

OBJECTIVE: Functional tricuspid regurgitation (FTR) levels can vary over time and its longitudinal changing patterns may predict right ventricular dysfunction (RVD) risk. We aim to identify different trajectories of FTR in those who received mitral valve replacement (MVR) and investigate the association between longitudinal trajectory groups and RVD risk in a cohort study. METHODS AND RESULTS: A prospective cohort study, reported usual FTR levels at baseline in 2005-2015 and the participants of MVR have been followed up for 5-6 years, approximately every 1 year, and so far, the data have been collected across five subsequent phases. Five-year longitudinal trajectories of FTR were identified using group-based trajectory modeling (GBTM). We identified 3 distinct trajectories using a GBTM, labeled by initial value and changing pattern: stable group (258/378, 68.2%), increasing-slow group (67/378, 17.6%) and increasing-fast group (53/378, 14.2%). Treating the stable group as the reference, the age- and sex-adjusted odds ratio (OR) was 25.84 (95% confidence interval [CI]: 11.78-56.65) for the increasing-slow group and 139.94 (95% CI: 45.47-430.68) for the increasing-fast group by logistic regression model. After adjustment for every potential confounding factors, the OR is 14.21 (95% CI: 4.36-46.33) and 49.34 (95% CI: 8.88-273.87), respectively. CONCLUSIONS: The longitudinal trajectories of worsening FTR were mostly associated with increased risk of RVD outcomes, which is independent of other factors including FTR levels. These findings have implications for intervention and prevention of RVD among individuals who received MVR.


Assuntos
Insuficiência da Valva Mitral , Insuficiência da Valva Tricúspide , Disfunção Ventricular Direita , Estudos de Coortes , Humanos , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/complicações , Insuficiência da Valva Mitral/cirurgia , Estudos Prospectivos , Insuficiência da Valva Tricúspide/complicações , Insuficiência da Valva Tricúspide/cirurgia , Disfunção Ventricular Direita/complicações
16.
Heart Surg Forum ; 25(1): E132-E139, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35238298

RESUMO

BACKGROUND: The objective was to develop and validate an individualized nomogram to predict severe functional tricuspid regurgitation (S-FTR) after mitral valve replacement (MVR) via retrospective analysis of rheumatic heart disease (RHD) patients' pre-clinical characteristics. METHODS: Between 2001-2015, 442 MVR patients of RHD were examined. Transthoracic echocardiography detected S-FTR, and logistic regression model analyzed its independent predictors. R software established a nomogram prediction model, and Bootstrap determined its theoretical probability, which subsequently was compared with the actual patient probability to calculate the area under the curve (AUC) and calibration plots. Decision curve analysis (DCA) identified its clinical utility. RESULTS: Ninety-six patients developed S-FTR during the follow-up period. Both uni- and multivariate analyses found significant correlations between S-FTR occurrence with gender, age, atrial fibrillation (AF), pulmonary arterial hypertension (PH), left atrial diameter (LAD), and tricuspid regurgitation area (TRA). The individualized nomogram model had the AUC of 0.99 in internal verification. Calibration test indicated high agreement of predicted and actual S-FTR onset. DCA also showed that utilization of those six aforementioned factors was clinically useful. CONCLUSION: The nomogram for the patient characteristics of age, gender, AF, PH, LAD, and TRA found that they were highly predictive for future S-FTR onset within 5 years. This predictive ability therefore allows clinicians to optimize postoperative patient care and avoid unnecessary tricuspid valve surgeries.


Assuntos
Insuficiência da Valva Mitral , Insuficiência da Valva Tricúspide , Pré-Escolar , Átrios do Coração , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Estudos Retrospectivos , Insuficiência da Valva Tricúspide/diagnóstico , Insuficiência da Valva Tricúspide/etiologia , Insuficiência da Valva Tricúspide/cirurgia
17.
Breast Cancer Res Treat ; 187(2): 349-362, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864166

RESUMO

PURPOSE: Metastasis is the main cause of breast cancer mortality. Recent studies have proved that lipid metabolic reprogramming plays critical roles in breast cancer carcinogenesis and metastasis. We aim to identify critical lipid metabolism genes in breast cancer metastasis. METHODS: We designed and cloned a CRISPR pooled library containing lipid metabolic gene guide RNAs and performed a genetic screen in vivo. Transwell assay and animal experiments were used to evaluate cell metastatic ability in vitro or in vivo, respectively. We performed immunohistochemistry with breast cancer tissue microarray to study the clinical significance of NSDHL. FINDINGS: We identified a cholesterol metabolic enzyme, NSDHL, as a potential metastatic driver in triple-negative breast cancer. NSDHL was highly expressed in breast cancer tissues and predicted a poor prognosis. NSDHL knockdown significantly suppressed cell proliferation and migration. Mechanistically, NSDHL activated the TGFß signaling pathway by inhibiting the endosomal degradation of TGFßR2. In addition, blocking the upstream metabolism of NSDHL with ketoconazole rescued cancer metastasis and TGFßR2 degradation. However, the inactivation of NSDHL (Y151X) did not rescue the migration ability and the TGFßR2 protein expression. CONCLUSION: Taken together, our findings established that NSDHL serves as a metastatic driver, and its function depends on its enzyme activity in cholesterol biosynthesis and is mediated by the NSDHL-TGFßR2 signal pathway. Our study indicated that NSDHL and steroid biosynthesis may serve as new drug targets for patients with advanced breast cancer.


Assuntos
3-Hidroxiesteroide Desidrogenases , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colesterol , Feminino , Humanos , Metástase Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/genética
18.
Cancer Cell Int ; 21(1): 708, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34953500

RESUMO

BACKGROUND: Distance metastasis is the leading cause of death for breast cancer patients, and circulating tumor cells (CTCs) play a key role in cancer metastasis. There have been few studies on CTCs at the molecular level due to their rarity, and the heterogeneity of CTCs may provide special information for solid tumor analysis. METHODS: In this study, we used the gene expression and clinical information of single-cell RNA-seq data of CTCs of breast cancer and discovered a cluster of epithelial cells that had more aggressive characteristics. The differentially expressed genes (DEGs) between the identified epithelial cells cluster and others from single-CTCs were selected for further analysis in bulk sequence data of solid breast cancers. RESULTS: Eighteen genes closely related to the specific CTC epithelial phenotype and breast cancer patient prognosis were identified. Among these 18 genes, we selected the GARS gene, which has not been studied in breast cancer, for functional research and confirmed that it may be a potential oncogene in breast cancer. A risk score was established by the 18 genes, and a high-risk score was strongly associated with a high metastasis rate and poor survival prognosis in breast cancer. The high-risk score group was related to a defective immune infiltration environment in breast cancer, and the immune checkpoint therapy response rate was lower in this group. The drug-sensitive analysis shows that the high-risk score patients may be more sensitive to AKT-mTOR and the cyclin-dependent kinase (CDK) pathways drugs than low-risk score patients. CONCLUSIONS: Our 18-gene risk score shows good prognostic and predictive values and might be a personalized prognostic marker or therapy guide marker in breast cancer patients.

19.
Mikrochim Acta ; 188(1): 3, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389215

RESUMO

A surface-enhanced Raman scattering (SERS) immunochromatographic assay (ICA) has been developed for rapid, ultrasensitive, and quantitative detection of rotavirus in feces using double Raman molecule-labeled Au-core Ag-shell nanoparticles. The Raman signals are generated by 5,5'-dithiobis-(2-nitrobenzoic acid) and the intensity of the characteristic peak at 1334-1 cm was detected as the analytical signal. The Raman signals were enhanced by the SERS-enhanced effect of both Au and Ag, the large amount of Raman molecules, and the hot-spot effect in the narrow gap between the Au core and Ag shell. The SERS ICA can quantitatively detect rotavirus in a concentration range of 8- 40,000 pg/mL, with detection limits of 80 pg/mL and 8 pg/mL based on naked eye observation and SERS signal detection, respectively. No cross-reaction was observed from other common pathogens. The standard deviation of the intra- and inter-batch repetitive tests is less than 10%, and the coincidence between SERS ICA and RT-qPCR as well as commercial colloidal gold ICA is 100%. The results indicated that this SERS ICA is able to quantitatively detect rotavirus in feces in 20 min with high sensitivity, selectivity, reproducibility, and accuracy and might be a promising method for the early detection of rotavirus in clinical analysis.


Assuntos
Cromatografia de Afinidade/métodos , Nanopartículas Metálicas/química , Rotavirus/isolamento & purificação , Análise Espectral Raman/métodos , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais Murinos/imunologia , Ácido Ditionitrobenzoico/química , Fezes/virologia , Ouro/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Rotavirus/imunologia , Prata/química
20.
BMC Microbiol ; 20(1): 177, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576241

RESUMO

BACKGROUND: The rapid identification of pathogenic bacteria is important for determining an appropriate antimicrobial therapy for pneumonia, but traditional bacterial culture is time-consuming and labourious. The aim of this study was to develop and evaluate a DNA microarray assay for the simultaneous detection of fifteen bacterial species directly from respiratory tract specimens in patients with pneumonia. These species included Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Mycoplasma pneumoniae, Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae, Stenotrophomonas maltophilia, Burkholderia cepacia, Legionella pneumophila and Chlamydia pneumoniae. The 16S rDNA genes and other specific genes of each pathogen were chosen as the amplification targets, amplified via multiplex polymerase chain reaction (PCR), and hybridized to oligonucleotide probes in a microarray. RESULTS: The DNA microarray detection limit was 103 copies/µL. Nineteen standard strains and 119 clinical isolates were correctly detected with our microarray, and 3 nontarget species from 4 clinical isolates were not detected. Additionally, bacterial pathogens were accurately identified when two or three bacterial targets were mixed together. Furthermore, the results for 99.4% (156/157) of clinical specimens were the same as those from a conventional assay. CONCLUSIONS: We developed a DNA microarray that could simultaneously detect various bacterial pathogens in pneumonia. The method described here has the potential to provide considerable labour and time savings due to its ability to screen for 15 bacterial pathogens simultaneously.


Assuntos
Bactérias/classificação , DNA Bacteriano/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pneumonia/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA