RESUMO
BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.
Assuntos
Colletotrichum , Doenças das Plantas , Imunidade Vegetal , Zea mays , Colletotrichum/patogenicidade , Resistência à Doença , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/genética , Glucanos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Zea mays/imunologia , Zea mays/microbiologiaRESUMO
Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.
Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza , Oxilipinas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Xanthomonas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiologia , Imunidade Vegetal/efeitos dos fármacos , Mutação/genética , Resistência à Doença/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos dos fármacosRESUMO
Plants are commonly exposed to abiotic stressors, which can affect their growth, productivity, and quality. Previously, the maize transcription factor ZmCCT was shown to be involved in the photoperiod response, delayed flowering, and quantitative resistance to Gibberella stalk rot. In this study, we demonstrate that ZmCCT can regulate plant responses to drought. ZmCCT physically interacted with ZmFra a 1, ZmWIPF2, and ZmAux/IAA8, which localized to the cell membrane, cytoplasm, and nucleus, respectively, both in vitro and in vivo in a yeast two-hybrid screen in response to abiotic stress. Notably, ZmCCT recruits ZmWIPF2 to the nucleus, which has strong E3 self-ubiquitination activity dependent on its RING-H2 finger domain in vitro. When treated with higher indole-3-acetic acid/abscisic acid ratios, the height and root length of Y331-ΔTE maize plants increased. Y331-ΔTE plants exhibited increased responses to exogenously applied auxin or ABA compared to Y331 plants, indicating that ZmCCT may be a negative regulator of ABA signalling in maize. In vivo, ZmCCT promoted indole-3-acetic acid biosynthesis in ZmCCT-overexpressing Arabidopsis. RNA-sequencing and DNA affinity purification-sequencing analyses showed that ZmCCT can regulate the expression of ZmRD17, ZmAFP3, ZmPP2C, and ZmARR16 under drought. Our findings provide a detailed overview of the molecular mechanism controlling ZmCCT functions and highlight that ZmCCT has multiple roles in promoting abiotic stress tolerance.
Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Secas , Estresse Fisiológico/genéticaRESUMO
The southwest maize planting area is the third largest maize-producing region in China, including the entire provinces of Sichuan, Yunnan and Guizhou, parts of Guangxi and Hunan provinces. In June 2022, yellow leaf spot symptoms were observed commonly on maize in southern Yunnan province, including Pu'er City, Xishuangbanna Dai autonomous prefecture and Honghe Hani & Yi autonomous prefecture. The disease incidence on maize in Pu'er ranged from 10% to 20% from June to August. The initial symptoms appeared as needle-like spots scattered on the leaf surface with obvious yellow haloes, with a diameter ranging from 0.2 to 2 mm and were quite similar to maize Curvularia leaf spot. But the lesion size did not expand significantly and without reddish or dark brown margins. In July 2023, 30 diseased leaves were collected in Pu'er City, Yunnan Province. Leaf tissues (3×3 mm) were cut from the infected margins, surface disinfested with 75% ethanol for 30 s, 2% sodium hypochlorite for 2 min, and rinsed three times with sterile water, then placed on PDA at 25â. Forty-eight isolates with the morphological characteristics of Colletotrichum ssp. were obtained by single-spore isolations (isolation frequency 42.5%). The fungal colonies on PDA were dense with white mycelia on the edges, and yellowish-white on the reverse side. The conidia were transparent, cylindrical, smooth-walled, and 6.8 to 17.5 × 3.8 to 6.5 µm. Two isolates (YNH-1 and YNH-2) were used for DNA extraction. The ribosomal internal transcribed spacer (ITS), actin (ACT), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ß-tubulin 2 (TUB2) regions were amplified by PCR. The PCR primers in this study were as described previously (Weir et al. 2012). The sequences of both isolates were 100% identical, and all sequences showed >98% identity with Colletotrichum siamense in the GenBank. The sequences were deposited in GenBank (ITS, PP237394; ACT, PP265410; CAL, PP265411; GAPDH, PP265412; TUB2, PP265413). A phylogenetic tree was constructed by MEGA_v. 11.0.13 with the Maximum Likelihood (ML) method. The isolate YNH-1 and YNH-2 clustered with C. siamense DAR 76934 (97% bootstrap support) in the same branch. Pathogenicity tests were performed on the susceptible maize variety B73. Twelve healthy maize seedlings were inoculated with a conidial suspension (1×106 conidia/ml) of isolate YNH-1. All the seedlings were kept in an incubator at 26â, with a 90% humidity and a 12 h light/dark cycle. After 5 days, yellow spots appeared on the leaves of the plants. The symptoms on inoculated leaves were similar to those observed in the field after 10 days, whereas no symptoms appeared in the control. The pathogen C. siamensis was re-isolated from the infected leaves, which fulfilled the Koch's postulates. C. siamense can cause leaf diseases on a wide range of hosts. It has been reported causing anthracnose on tea (Camellia sinensis) (Wang et al. 2016) and wax apple (Syzygium samarangense) (Yao et al. 2023) in Yunnan Province, China. To our knowledge, this is the first report of C. siamense causing yellow leaf spots on maize in China as well as a new host record for C. siamense causing leaf disease. However, how C. siamense spreads among different host plants in the region is still unknown. This study provides important information for epidemiological study and comprehensive management of yellow leaf spot on maize.
RESUMO
Besides manipulating nitrate uptake and allocation, nitrate transporters (NRTs) are also known to play crucial roles in pathogen defense and stress response. By blasting with the model NRT genes of poplar and Arabidopsis, a total of 408 gene members were identified from 5 maize inbred lines in which the number of NRTs ranged from 72 to 88. Phylogenetic analysis showed that the NRT genes of maize were classified into NRT1/PTR (NPF), NRT2 and NRT3 subfamilies, respectively. Marked divergence of the duplication patterns of NRT genes were identified, which may be a new basis for classification and identification of maize varieties. In terms of biotic stress, NRT2.5A showed an enhanced expression during the pathogen infection of Colletotrichum graminicola, while NRT1c4C was down-regulated, suggesting that maize NRT transporters may have both positive and negative roles in the disease resistance response. This work will promote the further studies of NRT gene families in maize, as well as be beneficial for further understanding of their potential roles in plant-pathogen interactions.
Assuntos
Interações Hospedeiro-Patógeno , Transportadores de Nitrato , Zea mays , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Colletotrichum , Regulação da Expressão Gênica de Plantas , Genômica , Interações Hospedeiro-Patógeno/genética , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismoRESUMO
The maize anthracnose stalk rot and leaf blight diseases caused by the fungal pathogen Colletotrichum graminicola is emerging as an important threat to corn production worldwide. In this work, we provide an improved genome assembly of a C. graminicola strain (TZ-3) by using the PacBio Sequel II and Illumina high-throughput sequencing technologies. The genome of TZ-3 consists of 36 contigs with a length of 59.3 Mb. After correction and evaluation with the Illumina sequencing data and BUSCO, this genome showed a high assembly quality and integrity. Gene annotation of this genome predicted 11,911 protein-coding genes, among which 983 secreted protein-coding genes and 332 effector genes were predicted. Compared with previous genomes of C. graminicola strains, TZ-3 genome is superior in nearly all parameters. The genome assembly and annotation will enhance our knowledge of the genetic makeup of the pathogen and molecular mechanisms underlying its pathogenicity and will provide valuable insights into genome variation across different regions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Colletotrichum , Anotação de Sequência Molecular , Colletotrichum/genética , China , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) play critical roles in various biological processes in plants. Extensive studies utilizing high-throughput RNA sequencing have revealed that many lncRNAs are involved in plant disease resistance. Oryza sativa RNase P protein 30 (OsRpp30) has been identified as a positive regulator of rice immunity against fungal and bacterial pathogens. Nevertheless, the specific functions of lncRNAs in relation to OsRpp30-mediated disease resistance in rice remain elusive. RESULTS: We conducted a comprehensive analysis of lncRNAs, miRNAs, and mRNAs expression patterns in wild type (WT), OsRpp30 overexpression (OsRpp30-OE), and OsRpp30 knockout (OsRpp30-KO) rice plants. In total, we identified 91 differentially expressed lncRNAs (DElncRNAs), 1671 differentially expressed mRNAs (DEmRNAs), and 41 differentially expressed miRNAs (DEmiRNAs) across the different rice lines. To gain further insights, we investigated the interaction between DElncRNAs and DEmRNAs, leading to the discovery of 10 trans- and 27 cis-targeting pairs specific to the OsRpp30-OE and OsRpp30-KO samples. In addition, we constructed a competing endogenous RNA (ceRNA) network comprising differentially expressed lncRNAs, miRNAs, and mRNAs to elucidate their intricate interplay in rice disease resistance. The ceRNA network analysis uncovered a set of gene targets regulated by lncRNAs and miRNAs, which were found to be involved in pathogen recognition, hormone pathways, transcription factor activation, and other biological processes related to plant immunity. CONCLUSIONS: Our study provides a comprehensive expression profiling of lncRNAs, miRNAs, and mRNAs in a collection of defense mutants in rice. To decipher the putative functional significance of lncRNAs, we constructed trans- and cis-targeting networks involving differentially expressed lncRNAs and mRNAs, as well as a ceRNA network incorporating differentially expressed lncRNAs, miRNAs, and mRNAs. Together, the findings from this study provide compelling evidence supporting the pivotal roles of lncRNAs in OsRpp30-mediated disease resistance in rice.
Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Oryza/genética , Oryza/metabolismo , Ribonuclease P/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Resistência à Doença/genética , Perfilação da Expressão Gênica , Redes Reguladoras de GenesRESUMO
N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown. In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host. Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C. graminicola. Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.
Assuntos
Colletotrichum , Zea mays , Glicosilação , Zea mays/microbiologia , Retículo Endoplasmático , Doenças das Plantas/microbiologiaRESUMO
Secretion is a fundamental process that plant pathogens utilize to deliver effectors into the host to downregulate immunity and promote infection. Here, we uncover a fascinating membrane trafficking and delivery route that originates from vacuolar membranes in Magnaporthe oryzae and conduits to the host interface and plasma membrane. To perform such secretory/trafficking function, MoRab7 first recruits the retromer complex to the vacuolar membrane, enabling recognition of a family of SNARE proteins, including MoSnc1. Live-cell imaging confirmed a highly dynamic vesicular trafficking of the retromer complex component(s) and MoSnc1 toward and across the host interface or plasma membrane, and subsequent fusion with target membranes. Interestingly, disruption of the MoRab7/Retromer/MoSnc1-based endolysosomal cascade affects effector secretion and fungal pathogenicity. Taken together, we discovered an unconventional protein and membrane trafficking route starting from the fungal endolysosomes to the M. oryzae-rice interaction interface and dissect the role of MoRab7/Retromer/MoSnc1 sorting machinery in effector secretion during biotrophy and invasive growth in rice blast fungus.
Assuntos
Magnaporthe , Oryza , Endossomos/metabolismo , Transporte Proteico , Vacúolos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Oryza/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologiaRESUMO
Histone H3 lysine 27 methylation catalyzed by polycomb repressive complex 2 (PRC2) is conserved from fungi to humans and represses gene transcription. However, the mechanism for recognition of methylated H3K27 remains unclear, especially in fungi. Here, we found that the bromo-adjacent homology (BAH)-plant homeodomain (PHD) domain containing protein BAH-PHD protein 1 (BP1) is a reader of H3K27 methylation in the cereal fungal pathogen Fusarium graminearum. BP1 interacts with the core PRC2 component Suz12 and directly binds methylated H3K27. BP1 is distributed in a subset of genomic regions marked by H3K27me3 and co-represses gene transcription. The BP1 deletion mutant shows identical phenotypes on mycelial growth and virulence, as well as similar expression profiles of secondary metabolite genes to the strain lacking the H3K27 methyltransferase Kmt6. More importantly, BP1 can directly bind DNA through its PHD finger, which might increase nucleosome residence and subsequently reinforce transcriptional repression in H3K27me3-marked target regions. A phylogenetic analysis showed that BP1 orthologs are mainly conserved in fungi. Overall, our findings provide novel insights into the mechanism by which PRC2 mediates gene repression in fungi, which is distinct from the PRC1-PRC2 system in plants and mammals.
Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , DNA/metabolismo , Proteínas Fúngicas/química , Fusarium/metabolismo , Histonas/química , Lisina/metabolismo , Proteínas Repressoras/metabolismo , Transcrição GênicaRESUMO
Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 µg/mL, with a mean value of 0.685 ± 0.687 µg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 µg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.
Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Zea maysRESUMO
Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.
Assuntos
Oryza , Clorofila , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RhizoctoniaRESUMO
Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn't affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis.
Assuntos
Retículo Endoplasmático/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Estudos de Avaliação como Assunto , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Glicosilação , Hifas/genética , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteômica/métodos , Deleção de Sequência , Esporos Fúngicos/crescimento & desenvolvimento , Virulência/genéticaRESUMO
Glycosylphosphatidylinositol (GPI) anchoring is a common post-translational modification in eukaryotic cells and has been demonstrated to have a wide range of biological functions, such as signal transduction, cellular adhesion, protein transport, immune response, and maintaining cell wall integrity. More than 25 proteins have been proven to participate in the GPI anchor synthesis pathway which occurs in the cytoplasmic and the luminal face of the ER membrane. However, the essential proteins of the GPI anchor synthesis pathway are still less characterized in maize pathogen Colletotrichum graminicola. In the present study, we analyzed the biological function of the GPI anchor synthesis pathway-related gene, CgGPI7, that encodes an ethanolamine phosphate transferase, which is localized in ER. The vegetative growth and conidia development of the ΔCgGPI7 mutant was significantly impaired in C. graminicola. and qRT-PCR results showed that the transcriptional level of CgGPI7 was specifically induced in the initial infection stage and that the pathogenicity of ΔCgGPI7 mutant was also significantly decreased compared with the wild type. Furthermore, the ΔCgGPI7 mutant displayed more sensitivity to cell wall stresses, suggesting that CgGPI7 may play a role in the cell wall integrity of C. graminicola. Cell wall synthesis-associated genes were also quantified in the ΔCgGPI7 mutant, and the results showed that chitin and ß-1,3-glucans synthesis genes were significantly up-regulated in ΔCgGPI7 mutants. Our results suggested that CgGPI7 is required for vegetative growth and pathogenicity and might depend on the cell wall integrity of C. graminicola.
Assuntos
Colletotrichum , Glicosilfosfatidilinositóis , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Virulência/genéticaRESUMO
Rice blast caused by Magnaporthe oryzae is one of the most serious fungous diseases in rice. In the past decades, studies have reported that numerous M. oryzae effectors were secreted into plant cells to facilitate inoculation. Effectors target host proteins to assist the virulence of pathogens via the localization of specific organelles, such as the nucleus, endoplasmic reticulum, chloroplast, etc. However, studies on the pathogenesis of peroxisome-targeting effectors are still limited. In our previous study, we analyzed the subcellular localization of candidate effectors from M. oryzae using the agrobacterium-mediated transient expression system in tobacco and found that MoPtep1 (peroxisomes-targeted effector protein 1) localized in plant peroxisomes. Here, we proved that MoPtep1 was induced in the early stage of the M. oryzae infection and positively regulated the pathogenicity, while it did not affect the vegetative growth of mycelia. Subcellular localization results showed that MoPtep1 was localized in the plant peroxisomes with a signal peptide and a cupredoxin domain. Sequence analysis indicated that the homologous protein of MoPtep1 in plant-pathogenic fungi was evolutionarily conserved. Furthermore, MoPtep1 could suppress INF1-induced cell death in tobacco, and the targeting host proteins were identified using the Y2H system. Our results suggested that MoPtep1 is an important pathogenic effector in rice blast.
Assuntos
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Virulência/genéticaRESUMO
Nigrospora oryzae is an important phytopathogenic fungus with a broad host range. Here, we report an annotated draft of the genome of N. oryzae field strain GZL1 collected from maize assembled from PacBio and Illumina sequencing reads. The assembly we obtained has 15 scaffolds with an N50 length of 4,037,616 bp. The resulting GZL1 draft genome is 43,214,190 bp, with GC content of 58.19%. The completeness of GZL1 genome assembly is 99.30%. This study is the first report of the genome sequence of N. oryzae, which can facilitate future study of the genetic variation and pathogenic mechanism of this important fungal pathogen.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Produção Agrícola , Genoma FúngicoRESUMO
Rhizoctonia solani is an important soil-borne fungal pathogen that causes serious diseases on many agricultural crops and vegetables. Here, we report a complete genome assembly of R. solani AG4 (assembly: 45.47 Mb; contig N50: 1.56 Mb), using a combination of Illumina paired-end and PacBio long-read sequencing data. A total of 267 noncoding RNAs and 11,592 genes were predicted, including 109 genes associated with carbohydrate-active enzymes and 2,488 genes involved in host-pathogen interactions. The complete genome of R. solani AG4 represents a valuable base for studying interactions between host plants and pathogenic fungi and to search for potential antimicrobial targets.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Doenças das Plantas , Rhizoctonia , Anastomose Cirúrgica , Produtos Agrícolas , Rhizoctonia/genéticaRESUMO
Kabatiella zeae is the causative pathogen of corn eyespot disease, which is an important leaf disease that damages corn (Zea mays L.) worldwide. In this study, we provided an annotated draft of the assembled genome of the K. zeae field strain KZ1 through PacBio and Illumina sequencing. The assembled KZ1 genome size is 23,602,820 bp, and its GC content is 50.71%. The completeness of the assembled genome is 97.6% in this study. The assembly obtained in this study has 94 contigs and the length of N50 is 720,243 bp. This study is the first report of the K. zeae genome, which contributes to further research on the genetic variation and pathogenic mechanism of this important fungal pathogen.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Doenças das Plantas , Zea mays , Aureobasidium , GenômicaRESUMO
Pyricularia oryzae is a multi-host pathogen causing cereal disease, including the devastating rice blast. Panicle blast is a serious stage, leading to severe yield loss. Thirty-one isolates (average 4.1%) were collected from the rice panicle lesions at nine locations covering Jiangsu province from 2010 to 2017. These isolates were characterized as Pyricularia sp. jiangsuensis distinct from known Pyricularia species. The representative strain 18-2 can infect rice panicle, root and five kinds of grasses. Intriguingly, strain 18-2 can co-infect rice leaf with P. oryzae Guy11. The whole genome of P. sp. jiangsuensis 18-2 was sequenced. Nine effectors were distributed in translocation or inversion region, which may link to the rapid evolution of effectors. Twenty-one homologues of known blast-effectors were identified in strain 18-2, seven effectors including the homologues of SLP1, BAS2, BAS113, CDIP2/3, MoHEG16 and Avr-Pi54, were upregulated in the sample of inoculated panicle with strain 18-2 at 24 hpi compared with inoculation at 8 hpi. Our results provide evidences that P. sp. jiangsuensis represents an addition to the mycobiota of blast disease. This study advances our understanding of the pathogenicity of P. sp. jiangsuensis to hosts, which sheds new light on the adaptability in the co-evolution of pathogen and host.
Assuntos
Magnaporthe , Oryza , Grão Comestível , Magnaporthe/genética , Doenças das Plantas , Poaceae , VirulênciaRESUMO
RNase P functions either as a catalytic ribonucleoprotein (RNP) or as an RNA-free polypeptide to catalyse RNA processing, primarily tRNA 5' maturation. To the growing evidence of non-canonical roles for RNase P RNP subunits including regulation of chromatin structure and function, we add here a role for the rice RNase P Rpp30 in innate immunity. This protein (encoded by LOC_Os11g01074) was uncovered as the top hit in yeast two-hybrid assays performed with the rice histone deacetylase HDT701 as bait. We showed that HDT701 and OsRpp30 are localized to the rice nucleus, OsRpp30 expression increased post-infection by Pyricularia oryzae (syn. Magnaporthe oryzae), and OsRpp30 deacetylation coincided with HDT701 overexpression in vivo. Overexpression of OsRpp30 in transgenic rice increased expression of defence genes and generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, outcomes that culminated in resistance to a fungal (P. oryzae) and a bacterial (Xanthomonas oryzae pv. oryzae) pathogen. Knockout of OsRpp30 yielded the opposite phenotypes. Moreover, HA-tagged OsRpp30 co-purified with RNase P pre-tRNA cleavage activity. Interestingly, OsRpp30 is conserved in grass crops, including a near-identical C-terminal tail that is essential for HDT701 binding and defence regulation. Overall, our results suggest that OsRpp30 plays an important role in rice immune response to pathogens and provides a new approach to generate broad-spectrum disease-resistant rice cultivars.