Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Inorg Chem ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053139

RESUMO

Organotin(IV) and iridium(III) complexes have shown good application potential in the field of anticancer; however, the aggregation-caused quenching (ACQ) effect induced by high concentration or dose has limited the research on their targeting and anticancer mechanism. Then, a series of aggregation-induced emission (AIE)-activated butyltin(IV)-iridium(III) imidazole-phenanthroline complexes were prepared in this study. Complexes exhibited significant fluorescence improvement in the aggregated state because of the restricted intramolecular rotation (RIR), accompanied by an absolute fluorescence quantum yield of up to 29.2% (IrSn9). Complexes demonstrated potential in vitro antiproliferative and antimigration activity against A549 cells, following a lysosomal-mitochondrial apoptotic pathway. Nude mouse models further confirmed that complexes had favorable in vivo antitumor and antimigration activity in comparison to cisplatin. Therefore, butyltin(IV)-iridium(III) imidazole-phenanthroline complexes possess the potential as potential substitutes for platinum-based drugs.

2.
Inorg Chem ; 62(8): 3395-3408, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763897

RESUMO

Half-sandwich iridium(III) complexes show potential value in the anticancer field. However, complexes with favorable luminescence performance are rare, which limits further investigation of the anticancer mechanism. In this paper, 10 triphenylamine-modified fluorescent half-sandwich iridium(III) pyridine complexes {[(η5-Cpx)Ir(L)Cl2]} (Ir1-Ir10) were prepared and showed potential antiproliferative activity, effectively inhibiting the migration of A549 cells. Ir6, showing the best activity among these complexes, exhibited excellent fluorescence performance (absolute fluorescence quantum yield of 15.17%) in solution. Laser confocal detection showed that Ir6 followed an energy-dependent cellular uptake mechanism, specifically accumulating in mitochondria (Pearson co-localization coefficient of 0.95). A Western blot assay further confirmed the existence of a mitochondrial apoptotic channel. Additionally, Ir6 could arrest the cell cycle at the G2/M phase, catalyze NADH oxidation, reduce the mitochondrial membrane potential, induce an increase in the level of intracellular reactive oxygen species, and exhibit a mechanism of oxidation. An in vivo antitumor assay confirmed that Ir6 can effectively inhibit tumor growth and is safer than cisplatin.


Assuntos
Antineoplásicos , Complexos de Coordenação , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Irídio/farmacologia , Cisplatino/farmacologia , Piridinas/farmacologia , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo
3.
Chembiochem ; 22(3): 557-564, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964620

RESUMO

A series of half-sandwich structural iridium(III) phenanthroline (Phen) complexes with halide ions (Cl- , Br- , I- ) and pyridine leaving groups ([(η5 -CpX )Ir(Phen)Z](PF6 )n , Cpx : electron-rich cyclopentadienyl group, Z: leaving group) have been prepared. Target complexes, especially the Cpxbiph (biphenyl-substituted cyclopentadienyl)-based one, showed favourable anticancer activity against human lung cancer (A549) cells; the best one (Ir8) was almost five times that of cisplatin under the same conditions. Compared with complexes involving halide ion leaving groups, the pyridine-based one did not display hydrolysis but effectively caused lysosomal damage, leading to accumulation in the cytosol, inducing an increase in the level of intracellular reactive oxygen species and apoptosis; this indicated an anticancer mechanism of oxidation. Additionally, these complexes could bind to serum albumin through a static quenching mechanism. The data highlight the potential value of half-sandwich iridium(III) phenanthroline complexes as anticancer drugs.


Assuntos
Complexos de Coordenação/síntese química , Halogênios/química , Irídio/química , Fenantrolinas/química , Piridinas/química , Complexos de Coordenação/química , Íons/química , Estrutura Molecular
4.
Inorg Chem ; 60(22): 17063-17073, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34709784

RESUMO

Half-sandwiched structure iridium(III) complexes appear to be an attractive organometallic antitumor agents in recent years. Here, four triphenylamine-modified fluorescent half-sandwich iridium(III) thiosemicarbazone (TSC) antitumor complexes were developed. Because of the "enol" configuration of the TSC ligands, these complexes formed a unique dimeric configuration. Aided by the appropriate fluorescence properties, studies found that complexes could enter tumor cells in an energy-dependent mode, accumulate in lysosomes, and result in the damage of lysosome integrity. Complexes could block the cell cycle, improve the levels of intrastitial reactive oxygen species, and lead to apoptosis, which followed an antitumor mechanism of oxidation. Compared with cisplatin, the antitumor potential in vivo and vitro confirmed that Ir4 could effectively inhibit tumor growth. Meanwhile, Ir4 could avoid detectable side effects in the experiments of safety evaluation. Above all, half-sandwich iridium(III) TSC complexes are expected to be an encouraging candidate for the treatment of malignant tumors.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Corantes Fluorescentes/farmacologia , Irídio/farmacologia , Tiossemicarbazonas/farmacologia , Células A549 , Compostos de Anilina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Irídio/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Tiossemicarbazonas/química
5.
Anesthesiology ; 133(6): 1244-1259, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997750

RESUMO

BACKGROUND: Acid-sensing ion channel 3 (ASIC3) upregulation has been reported in dorsal root ganglion neurons after incision and contributes to postoperative nociception. This study hypothesized that upregulation of ASIC3 in incised tissues is induced by nerve growth factor through the phosphoinositide 3-kinase/protein kinase B signaling pathway. METHODS: A plantar incision model was established in adult male and female Sprague-Dawley rats. ASIC3 was inhibited by APETx2 treatment, small interfering RNA treatment, or ASIC3 knockout. Sciatic nerve ligation was performed to analyze ASIC3 transport. A nerve growth factor antibody and a phosphoinositide 3-kinase inhibitor were used to investigate the mechanism by which nerve growth factor regulates ASIC3 expression. RESULTS: Acid-sensing ion channel 3 inhibition decreased incisional guarding and mechanical nociception. ASIC3 protein levels were increased in skin and muscle 4 h after incision (mean ± SD: 5.4 ± 3.2-fold in skin, n = 6, P = 0.001; 4.3 ± 2.2-fold in muscle, n = 6, P = 0.001). Sciatic nerve ligation revealed bidirectional ASIC3 transport. Nerve growth factor antibody treatment inhibited the expression of ASIC3 (mean ± SD: antibody 2.3 ± 0.8-fold vs. vehicle 4.9 ± 2.4-fold, n = 6, P = 0.036) and phosphorylated protein kinase B (mean ± SD: antibody 0.8 ± 0.3-fold vs. vehicle 1.8 ± 0.8-fold, n = 6, P = 0.010) in incised tissues. Intraplantar injection of nerve growth factor increased the expression of ASIC3 and phosphorylated protein kinase B. ASIC3 expression and incisional pain-related behaviors were inhibited by pretreatment with the phosphoinositide 3-kinase inhibitor LY294002. CONCLUSIONS: Acid-sensing ion channel 3 overexpression in incisions contributes to postoperative guarding and mechanical nociception. Bidirectional transport of ASIC3 between incised tissues and dorsal root ganglion neurons occurs through the sciatic nerve. Nerve growth factor regulates ASIC3 expression after plantar incision through the phosphoinositide 3-kinase/protein kinase B signaling pathway.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Fator de Crescimento Neural/metabolismo , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Pós-Operatória/metabolismo , Dor Pós-Operatória/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
Chembiochem ; 20(21): 2767-2776, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31119850

RESUMO

Iridium(III) complexes have attracted more and more attention in the past few years because of their potential antineoplastic activity. In this study, four IrIII complexes of the types [(η5 -Cpx )Ir(N^N)Cl]PF6 (complexes 1 and 2) and [Ir(Phpy)2 (N^N)]PF6 (complexes 3 and 4) have been synthesized and characterized. They exhibit potential antineoplastic activity towards A549 cells, especially in the case of complex 1 [IC50 =(3.56±0.5) µm], which was nearly six times as effective as cisplatin [(21.31±1.7) µm]. Additionally, these complexes show some selectivity towards cancer cells over normal cells. They could be transported by serum albumin (binding constants were changed from 0.37×105 to 81.71×105 m-1 ). IrIII complexes 1 and 2 could catalyze the transformation of nicotinamide adenine dinucleotide reduced form (NADH) into NAD+ (turnover numbers 43.2, 11.9] and induce the accumulation of reactive oxygen species, thus confirming their antineoplastic mechanism of oxidation, whereas the cyclometalated complexes 3 and 4 were able to target the lysosome [Pearson co-localization coefficient (PCC)=0.73], cause lysosomal damage, and induce apoptosis. Understanding the mechanism of action would help further structure-activity optimization on these IrIII complexes as emerging cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Irídio/química , Estilbenos/química , Células A549 , Adenocarcinoma Bronquioloalveolar/metabolismo , Adenocarcinoma Bronquioloalveolar/patologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Químicos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria
7.
J Org Chem ; 84(7): 3990-3999, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30777425

RESUMO

The oxindole-embedded ortho-quinone methides were employed as reactive intermediates in formal [4 + 2] annulation with 1,3-dicarbonyls, providing an efficient access to spiro[chromen-4,3'-oxindole] scaffolds via a cascade conjugate addition/ketalization/dehydration process. This protocol featured metal-free conditions, wide substrate scope, and excellent yields.

8.
Inorg Chem ; 58(9): 5956-5965, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986046

RESUMO

Stable five-coordinated (16-electron) half-sandwich iridium(III) and ruthenium(II) complexes are rarely reported, and their biological evaluations have not been considered to date. Herein, in an experiment designed to synthesize six-coordinated half-sandwich iridium(III) and ruthenium(II) complexes containing N,N-chelated α-keto-ß-diimine ligands, we observed the serendipitous formation of half-sandwich aminoimine iridium(III) and ruthenium(II) complexes via solvent-involved rearrangement reaction. These unsaturated 16-electron complexes had sufficient stability in DMSO-water solution. Moreover, no reaction with two-electron donors (CO and PPh3) and nucleobase (9-MeA and 9-EtG) was observed. Most of the complexes show good anticancer activities toward A549, HeLa, and HepG2 cancer cells, which are higher than the clinical drug cisplatin. The investigation of mechanism by flow cytometry showed that the complexes exert their anticancer efficacy by inducing apoptosis or necrosis, and increasing the intracellular ROS level. In addition, fluorescence property of these complexes makes it possible to investigate the microscopic mechanism by confocal microscopy. Notably, the complexes Ir3 and Ru1 enter A549 cancer cells through an energy-independent pathway, and they are mainly located in mitochondria and lysosomes.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Iminas/química , Irídio/química , Rutênio/química , Células A549 , Aminação , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Células HeLa , Células Hep G2 , Humanos , Iminas/síntese química , Iminas/farmacologia , Irídio/farmacologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Rutênio/farmacologia
9.
Inorg Chem ; 58(2): 1710-1718, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30592414

RESUMO

In this paper, two ferrocenyl-triphenyltin complexes were synthesized and characterized. Complex 2 is constructed as new multifunctional therapeutic platform for lysosome-targeted imaging and displayed much higher cytotoxicity than its analogue 1 by the introduction of a methyl group instead of a hydrogen atom in acylhydrazone. The cyclic voltammograms and reaction with GSH (glutathione) further confirmed that complex 1 has a reversible redox peak and can react with GSH, which indicate that complex 1 might lose its anticancer effect by undergoing reaction with GSH once it enters the cancer cell. Complex 2 could effectively catalyze the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) to NAD+ and induce the production of reactive oxygen species (ROS), lead to caspase-dependent apoptosis through damaged mitochondria, simultaneously, accounting for the mitochondrial vacuolization and karyorrhexis. The caspase-3 activation and cytoplasmic vacuolation karyorrhexis induced by complex 2 revealed that the A549 cell lines might undergo cell death primarily mediated by apoptosis and oncosis; however, 1 cannot reproduce this effect. Taken together, these results indicated that complex 2 has more potential for evolution as a new bioimaging and anticancer agent.


Assuntos
Compostos Ferrosos/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Lisossomos/metabolismo , Metalocenos/farmacologia , Imagem Óptica , Compostos Organometálicos/farmacologia , Compostos Orgânicos de Estanho/farmacologia , Células A549 , Antineoplásicos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Humanos , Metalocenos/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Orgânicos de Estanho/química
10.
Inorg Chem ; 58(20): 14175-14184, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31559820

RESUMO

A series of ferrocene-appended half-sandwiched iridium(III) phenylpyridine complexes have been designed and synthesized. These complexes show better anticancer activity than cisplatin widely used in clinic under the same conditions. Meanwhile, complexes could effectively inhibit cell migration and colony formation. Complexes could interact with protein and transport through serum protein, effectively catalyzing the oxidation of nicotinamide-adenine dinucleotid and inducing the accumulation of reactive oxygen species (ROS, 1O2), which confirmed the anticancer mechanism of oxidation. Furthermore, laser scanning confocal detection indicates that these complexes can enter cells followed by a non-energy-dependent cellular uptake mechanism, effectively accumulating in the lysosome (Pearson's colocalization coefficient: ∼0.90), leading to lysosome damage, and reducing the mitochondrial membrane potential (MMP). Taken together, ferrocene-appended iridium(III) complexes possess the prospect of becoming a new multifunctional therapeutic platform, including lysosome-targeted imaging and anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Ferrosos/farmacologia , Irídio/farmacologia , Metalocenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Humanos , Irídio/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metalocenos/química , Estrutura Molecular , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
11.
Gastroenterology ; 153(6): 1607-1620, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28780076

RESUMO

BACKGROUND & AIMS: Polycomb group proteins are epigenetic factors that silence gene expression; they are dysregulated in cancer cells and contribute to carcinogenesis by unclear mechanisms. We investigated whether BMI1 proto-oncogene, polycomb ring finger (BMI1), and polycomb group ring finger 2 (PCGF2, also called MEL18) are involved in the initiation and progression of colitis-associated cancer (CAC) in mice. METHODS: We generated mice containing floxed alleles of Bmi1 and/or Mel18 and/or Reg3b using the villin-Cre promoter (called Bmi1ΔIEC, Mel18ΔIEC, DKO, and TKO mice). We also disrupted Bmi1 and/or Mel18 specifically in intestinal epithelial cells (IECs) using the villin-CreERT2-inducible promoter. CAC was induced in cre-negative littermate mice (control) and mice with conditional disruption of Bmi1 and/or Mel18 by intraperitoneal injection of azoxymethane (AOM) followed by addition of dextran sulfate sodium (DSS) to drinking water. Colon tissues were collected from mice and analyzed by histology and immunoblots; IECs were isolated and used in cDNA microarray analyses. RESULTS: Following administration of AOM and DSS, DKO mice developed significantly fewer polyps than control, Bmi1ΔIEC, Mel18ΔIEC, Reg3bΔIEC, or TKO mice. Adenomas in the colons of DKO mice were low-grade dysplasias, whereas adenomas in control, Bmi1ΔIEC, Mel18ΔIEC, Reg3bΔIEC, or TKO mice were high-grade dysplasias with aggressive invasion of the muscularis mucosa. Disruption of Bmi1 and Mel18 (DKO mice) during late stages of carcinogenesis significantly reduced the numbers of large adenomas and the load of total adenomas, reduced proliferation, and increased apoptosis in colon tissues. IECs isolated from DKO mice after AOM and DSS administration had increased expression of Reg3b compared with control, Bmi1ΔIEC, or Mel18ΔIEC mice. Expression of REG3B was sufficient to inhibit cytokine-induced activation of STAT3 in IECs. The human REG3ß protein, the functional counterpart of mouse REG3B, inhibited STAT3 activity in human 293T cells, and its expression level in colorectal tumors correlated inversely with pSTAT3 level and survival times of patients. CONCLUSIONS: BMI1 and MEL18 contribute to the development of CAC in mice by promoting proliferation and reducing apoptosis via suppressing expression of Reg3b. REG3B negatively regulates cytokine-induced activation of STAT3 in colon epithelial cells. This pathway might be targeted in patients with colitis to reduce carcinogenesis.


Assuntos
Pólipos Adenomatosos/etiologia , Transformação Celular Neoplásica/metabolismo , Colite/complicações , Colo/enzimologia , Neoplasias do Colo/etiologia , Pólipos do Colo/etiologia , Mucosa Intestinal/enzimologia , Proteínas Associadas a Pancreatite/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Pólipos Adenomatosos/enzimologia , Pólipos Adenomatosos/genética , Pólipos Adenomatosos/patologia , Animais , Apoptose , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/enzimologia , Colite/genética , Colite/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Pólipos do Colo/enzimologia , Pólipos do Colo/genética , Pólipos do Colo/patologia , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Células HEK293 , Humanos , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Transdução de Sinais , Fatores de Tempo
12.
J Biol Inorg Chem ; 23(5): 819-832, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934699

RESUMO

Organometallic half-sandwich IrIII complexes of the type [(η5-Cpx)Ir(N^N)Cl]PF6 1-6, where Cpx = C5Me5 (Cp*), C5Me4C6H5 (Cpxph), C5Me4C6H4C6H5 (Cpxbiph), N^N is imionopyridine chelating ligand, were prepared and characterized. The X-ray crystal structure of complex 1 has been determined. Four compounds displayed higher anticancer potency than clinically used anticancer drug cisplatin against A549 cancer cells, especially complex 3 which is 8 times more active than cisplatin. No hydrolysis was observed by NMR and UV-Vis for complexes 3 and 6; however, these complexes show big differences in nucleobase binding, mainly decided by the imionopyridine chelating ligand. Complex 3 is stable in the presence of glutathione, but 6 reacted rapidly with glutathione. The octanol/water partition coefficients (log P) of 3 and 6 have been determined. In addition, these complexes display effective catalytic activity in converting coenzyme NADH to NAD+ by accepting hydride to form an Ir hydride adduct. The mechanism of actions of these complexes involves apoptosis induction, cell cycles arrest, and significant increase of reactive oxygen species levels in A549 cancer cells.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Irídio/química , Células A549 , Apoptose , Catálise , Sobrevivência Celular , Cristalografia por Raios X , Glutationa/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , NAD/química , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta
13.
Anal Chem ; 88(17): 8795-801, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27506255

RESUMO

We report a bipolar electrode (BPE) sensing platform for the temporal detection of cancer cells. Combining the advantages of anodic dissolution and electrochemiluminescence (ECL), this strategy shows an ultralow detection limit down to 5 cells/cm(2). At the anode working as the reporting pole, Au NPs were assembled through DNA double strand, which served as both catalyzer for the ECL reaction of luminol/H2O2 and seeds for the chemical reduction of Ag, the anodic dissolution probe. The duration of Ag layer dissolution was positively correlated with the amount of Ag but negatively related to the controlled potential and the conductivity of the circuit. Therefore, it was possible to amplify a slight conductivity change through tuning the other two factors. As the formation of Ag@Au completely quenched the ECL emission of luminol, the ECL emission recovery reflected the extent of anodic dissolution. Through monitoring the ECL recovery time before and after the incubation of cells on the cathode, a few number of cells could be quantified due to slight difference of the conductivity. This method shows several merits. First, the combination of anodic dissolution and ECL significantly increases the detection sensitivity of BPE device. In addition, this strategy broadens the application of BPE for the ultrasensitive monitoring of cancer cells, which was applied to investigate the capture efficiencies of antibodies and aptamers toward MCF-7 and A549.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Técnicas Eletroquímicas , Medições Luminescentes , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Eletrodos , Feminino , Ouro/química , Humanos , Células MCF-7 , Prata/química
14.
Small ; 12(35): 4902-4908, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27443160

RESUMO

Alternative low-temperature solution-processed hole-transporting materials (HTMs) without dopant are critical for highly efficient perovskite solar cells (PSCs). Here, two novel small molecule HTMs with linear π-conjugated structure, 4,4'-bis(4-(di-p-toyl)aminostyryl)biphenyl (TPASBP) and 1,4'-bis(4-(di-p-toyl)aminostyryl)benzene (TPASB), are applied as hole-transporting layer (HTL) by low-temperature (sub-100 °C) solution-processed method in p-i-n PSCs. Compared with standard poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) HTL, both TPASBP and TPASB HTLs can promote the growth of perovskite (CH3 NH3 PbI3 ) film consisting of large grains and less grain boundaries. Furthermore, the hole extraction at HTL/CH3 NH3 PbI3 interface and the hole transport in HTL are also more efficient under the conditions of using TPASBP or TPASB as HTL. Hence, the photovoltaic performance of the PSCs is dramatically enhanced, leading to the high efficiencies of 17.4% and 17.6% for the PSCs using TPASBP and TPASB as HTL, respectively, which are ≈40% higher than that of the standard PSC using PEDOT:PSS HTL.

15.
Cardiorenal Med ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074462

RESUMO

INTRODUCTION: Cardiac surgery is related to an increased risk of postoperative acute kidney injury (AKI). Serum soluble ST2 (sST2) is highly predictive of several cardiovascular diseases and may also be involved in renal injury. This study explored the relationship between serum sST2 levels measured at ICU admission and the development of AKI after cardiac surgery. METHODS: We prospectively conducted an investigation on consecutive patients who underwent cardiac surgery. sST2 was immediately measured at ICU admission. The relationship between the levels of sST2 and the development of AKI was explored using stepwise logistic regression. RESULTS: Among the 500 patients enrolled, AKI was observed in 207 (41%) patients. Serum sST2 levels in AKI patients were higher than those without AKI (61.46 ng/ml [46.52, 116.25] versus 38.91 ng/ml [28.74, 50.93], P < 0.001). Additionally, multivariable logistic regression analysis showed that as progressively higher tertiles of serum sST2, the odds ratios (ORs) of AKI gradually increased (adjusted ORs of 1.97 [95% CI, 1.13-3.45], and 4.27 [95% CI, 2.36-7.71] for tertiles 2 and 3, respectively, relative to tertile 1, P < 0.05). The addition of sST2 further improved reclassification (P < 0.001) and discrimination (P < 0.001) over the basic model, which included established risk factors. CONCLUSION: Serum sST2 levels at ICU admission were associated with the development of postoperative AKI and improved the identification of AKI after cardiac surgery.

16.
Dalton Trans ; 53(2): 552-563, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38054240

RESUMO

Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio/farmacologia , Irídio/química , Bases de Schiff/farmacologia , Metalocenos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estudos Prospectivos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
17.
J Inorg Biochem ; 257: 112612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761579

RESUMO

Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non­platinum anticancer drugs.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Imidazóis , Irídio , Fenantrolinas , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Fenantrolinas/química , Fenantrolinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Células A549 , Espécies Reativas de Oxigênio/metabolismo , Fenantrenos/química , Fenantrenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos
18.
J Inorg Biochem ; 257: 112586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38728860

RESUMO

Ferrocene, ruthenium(II) and iridium(III) organometallic complexes, potential substitutes for platinum-based drugs, have shown good application prospects in the field of cancer therapy. Therefore, in this paper, six ferrocene-modified half-sandwich ruthenium(II) and iridium(III) propionylhydrazone complexes were prepared, and the anticancer potential was evaluated and compared with cisplatin. These complexes showed potential in-vitro anti-proliferative activity against A549 cancer cells, especially for Ir-based complexes, and showing favorable synergistic anticancer effect. Meanwhile, these complexes showed little cytotoxicity and effective anti-migration activity. Ir3, the most active complex (ferrocene-appended iridium(III) complex), could accumulate in the intracellular mitochondria, disturb the cell cycle (S-phase), induce the accumulation of reactive oxygen species, and eventually cause the apoptosis of A549 cells. Then, the design of these complexes provides a good structural basis for the multi-active non­platinum organometallic anticancer complexes.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Compostos Ferrosos , Hidrazonas , Irídio , Metalocenos , Rutênio , Humanos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Metalocenos/química , Metalocenos/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Células A549 , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos
19.
Parasitol Res ; 112(10): 3457-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23832642

RESUMO

The parasitic nematode Trichinella spiralis can cause trichinellosis, which leads to pathological processes in the intestine and muscle. The intestinal invasion determines the development, subsequent course, and consequences of the disease. Gastrointestinal nematode infection, including with T. spiralis, is accompanied by a rapid and reversible expansion of mucosal mast cell and goblet cell in the intestinal epithelium, which play important roles in the host immune response to parasite and worm expulsion from the intestine. Taurine and its derivatives have anti-infection and anti-inflammatory properties. We investigated whether taurine supplementation in mice could influence the development and pathological processes of infection with T. spiralis. Supplementing 1% taurine in drinking water in mice infected with T. spiralis could alleviate the burden of intestinal adult worms on days 7 and 10 postinfection (all p < 0.01) and the formation of infective muscle larvae in striated muscle during T. spiralis infection (p < 0.01). As compared with T. spiralis infection alone, taurine treatment increased the number of goblet cells on days 7, 10, and 15 (p < 0.01 and p < 0.05) and alleviated intestinal mucosal mast cell hyperplasia on days 10 and 15 (all p < 0.01). So taurine supplementation in drinking water increased infection-induced intestinal goblet cell hyperplasia and ameliorated mucosal mastocytosis. Thus, taurine can ameliorate the pathological processes of trichinellosis and may be of great value for the treatment and prevention of infection with T. spiralis and other gastrointestinal nematodes.


Assuntos
Água Potável/química , Enteropatias Parasitárias/tratamento farmacológico , Taurina/farmacologia , Triquinelose/tratamento farmacológico , Animais , Feminino , Enteropatias Parasitárias/parasitologia , Intestinos/citologia , Intestinos/patologia , Mastócitos/citologia , Mastócitos/patologia , Mastocitose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/parasitologia , Taurina/administração & dosagem , Taurina/química , Trichinella spiralis , Triquinelose/parasitologia
20.
J Inorg Biochem ; 239: 112069, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423395

RESUMO

Considering the potential application of half-sandwich and ferrocenyl-containing organometallic complexes in the area of anticancer, four half-sandwich iridium(III) (IrIII) and ruthenium(II) (RuII) diphenylphosphino ferrocene (dppf) complexes were prepared in this study. Complexes showed favorable anti-proliferation activity towards A549 cell lines compared to cisplatin, meanwhile, which could effectively inhibit cell migration. These complexes followed an energy dependence uptake mechanism, effectively accumulated in mitochondria with a Pearson's Colocalization Coefficient (PCC) of 0.77, decreased the mitochondrial membrane potential, induced a surge of reactive oxygen species, disturbed cell cycle, and eventually led to apoptosis. Western blot assay further confirmed that these complexes induced apoptosis following a mitochondrial pathway. Above all, half-sandwich IrIII and RuII dppf complexes show the prospect of becoming a new multifunctional therapeutic platform for mitochondrial targeted imaging and anticancer drugs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Irídio/farmacologia , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Mitocôndrias , Apoptose , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA