RESUMO
OBJECTIVE: Ginseng is widely used in cosmetics and skin care. The progress of research on the effect of ginseng on the skin was explored through a summary and analysis of skin-related studies on ginseng conducted over in the past 20 years, and this exploration aimed to elucidate new research opportunities with regard to the development and application of ginseng treatments for the skin. MATERIALS AND METHODS: Keywords were used to retrieve human studies related to the use of ginseng to treat skin conditions from the Web of Science. Scientometric analyses were performed in R to analyze the studies on the human skin-related effects of ginseng conducted from 2000 to 2019. RESULTS: The main active ingredient in ginseng is ginsenoside, and its effects on the skin are mostly anti-aging and whitening. Ginseng extract regulates the levels of matrix metalloproteinases in human fibroblast type I collagen to improve the elasticity and water content of skin. In addition, ginseng inhibits the transcription factors or signaling pathways involved in the formation of melanin, it exerts a whitening effect. The authors of the retrieved studies are mostly located in Asia, mainly South Korea and China. Wang Y, Kim JH, and Kim YJ are relatively influential scholars, these ginseng-related articles published in the Journal of Ginseng Research, Molecules and other journals are very important in this field. CONCLUSION: This study shows the development of trends in research on ginseng as a raw cosmetic material used on the skin and thus enables researchers to rapidly understand the key information in the field of ginseng research, comprehend the research directions, and improve their research efficiency.
Assuntos
Panax , Extratos Vegetais , Envelhecimento da Pele , Pele/efeitos dos fármacos , Bibliometria , Humanos , Extratos Vegetais/farmacologiaRESUMO
In this study, pulsed laser deposition method (PLD) was employed to grow MgxZn1-xO films on quartz substrates. The optimal deposition temperature of 300 °C for MgxZn1-xO film was decided and Mg0.38Zn0.62O, Mg0.56Zn0.44O and Mg0.69Zn0.31O films were grown respectively using MgxZn1-xO targets with different Mg contents (x = 0.3, 0.5 and 0.7). As-deposited Mg0.38Zn0.62O film possessed the mixed-phase (hexagonal and cubic phase) structure, appropriate band gap of 4.68 eV and smaller surface roughness of 1.72 nm, and the solar-blind photodetector (PD) based on it was fabricated. The key features of our PD are the cutoff wavelength of 265 nm lying in solar-blind band, lower dark current (Idark) of 88 pA, higher peak responsivity of 0.10 A/W and bigger Ilight/Idark ratio of 1688, which provide the new idea for the application of solar-blind PDs based on MgxZn1-xO films.
RESUMO
In this study, pulsed laser deposition method (PLD) was employed to grow MgxZn1-xO films on quartz substrates. The optimal deposition temperature of 300 °C for MgxZn1-xO film was decided and Mg0.38Zn0.62O, Mg0.56Zn0.44O and Mg0.69Zn0.31O films were grown respectively using MgxZn1-xO targets with different Mg contents (x = 0.3, 0.5 and 0.7). As-deposited Mg0.38Zn0.62O film possessed the mixed-phase (hexagonal and cubic phase) structure, appropriate band gap of 4.68 eV and smaller surface roughness of 1.72 nm, and the solar-blind photodetector (PD) based on it was fabricated. The key features of our PD are the cutoff wavelength of 265 nm lying in solar-blind band, lower dark current (Idark) of 88 pA, higher peak responsivity of 0.10 A/W and bigger Ilight/Idark ratio of 1688, which provide the new idea for the application of solar-blind PDs based on MgxZn1-xO films.
RESUMO
Tungsten oxide microflowers (WO3 MFs) were fabricated by a simple hydrothermal process through adjusting the pH of the solution by HCl. These MFs possess the outer diameters of about 2 µm and are composed of numerous nanoplates with the average pore size of 10.9 nm. Chemiresistive activity of as-fabricated WO3 MFs sensor was attempted towards oxidizing and reducing target gases, revealing a superior selectivity to NO2 with a maximum response of 22.95 (2 ppm NO2) @105 °C compared to other target gases. One of the key features of as-fabricatedWO3 MFs sensor is the lower detection limit of 125 ppb and operating temperature of 105 °C to NO2 with better reproducibility, signifying commercial prospective of the developed sensor materials. Finally, the gas sensing mechanism of WO3 MFs sensor has been proposed.
RESUMO
Precisely controlled dimensions of heterostructured ZnO nanorod arrays were grown on micropatterned Au films supported by Si substrate using chemical vapor deposition (CVD). The field emission properties were attributed to pointed nanorods, thickness of catalyst, preferential growth, density, morphology of ZnO and Molybdenum (Mo) decorated ZnO nanorod arrays (Mo/ZnO). The selective restrained heterostructure approach resulted in excellent control over periodicity, location and density of ZnO nanorod arrays. Overall, field emission properties of bare ZnO nanorod arrays showed a low turn-on field of ~4.7 V/µm and a high field enhancement factor (ß) ~1686 to 7.3 V/µm and (ß) ~807 for Mo/ZnO. It was also found that the field emission properties were significantly influenced by densely decorated Mo nanoparticles on as-grown ZnO nanorod arrays.