Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
2.
Haematologica ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356460

RESUMO

ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6 ALL, leading to ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.

3.
BMC Cancer ; 24(1): 406, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565996

RESUMO

BACKGROUND: Autologous stem-cell transplantation (ASCT) remains a beneficial approach for patients with newly diagnosed multiple myeloma (NDMM) in the age of novel therapeutic agents. Nevertheless, limited real-world data is available to establish criteria for identifying high-risk ASCT patients. METHODS: We analyzed outcomes for 168 NDMM patients who underwent ASCT at our center from December 2015 to December 2022. We investigated the impact of the number of high-risk cytogenetics (HRCA), defined as t(4;14), t(14;16), 1q21 gain/amplification, and del(17p), as well as the post-ASCT minimal residual disease (MRD) status as prognostic indicators. We assessed progression-free survival (PFS) and overall survival (OS), and focused on identifying risk factors. RESULTS: The cohort included 42% of patients (n = 71) with 0 HRCA, 42% (n = 71) with 1 HRCA, and 16% (n = 26) with ≥ 2 HRCA. After a median follow-up of 31 months, the median PFS was 53 months (95% CI, 37-69), and OS was not reached for the entire cohort. Despite similar rates of MRD-negativity post-ASCT, patients with ≥ 2 HRCA, termed "double hit" (DH), had a significantly higher risk of progression/mortality than those with 0 or 1 HRCA. Multivariate analysis highlighted DH (HR 4.103, 95% CI, 2.046-8.231) and MRD positivity post-ASCT (HR 6.557, 95% CI, 3.217-13.366) as adverse prognostic factors for PFS, with DH also linked to inferior OS. As anticipated, DH patients with post-ASCT MRD positivity displayed the poorest prognosis, with a median PFS of 7 months post-ASCT. Meanwhile, DH patients with MRD negativity post-ASCT showed improved prognosis, akin to MRD-negative non-DH patients. It is noteworthy to exercise caution, as DH patients who initially achieved MRD negativity experienced a 41% cumulative loss of that status within one year. CONCLUSIONS: This study strongly advocates integrating DH genetic assessments for eligible ASCT patients and emphasizes the importance of ongoing MRD monitoring, as well as considering MRD-based treatment adaptation for those patients in real-world settings.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/diagnóstico , Resultado do Tratamento , Transplante Autólogo , Transplante de Células-Tronco , Aberrações Cromossômicas , Neoplasia Residual/diagnóstico
4.
Org Biomol Chem ; 22(1): 175-183, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38053497

RESUMO

The bioinspired and stereoselective synthesis of the furo[3,2-b] furan lactone (-)-protulactone A and the dioxabicyclo[3.3.1]nonane lactone (+)-protulactone B has been achieved based on the chiron approach. The synthesis features the utilization of a number of one-pot, sequential transformations, including a cascade reaction of reductive elimination and nucleophilic addition in a one-pot process and a one-pot sequence via cross-metathesis/acetonide deprotection/O-Michael addition/lactonization to streamline the synthesis route and avoid the tedious work of product purification. Synthetic protulactones and their analogues were evaluated for their in vitro antiproliferative activity against selected tumor cell lines (MCF-7 and Capan 2) and showed minor cytotoxicity.


Assuntos
Lactonas , Estrutura Molecular , Estereoisomerismo , Linhagem Celular Tumoral , Lactonas/farmacologia
5.
BMC Genomics ; 23(1): 467, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751016

RESUMO

BACKGROUND: T cell acute lymphoblastic leukemia (T-ALL) defines a group of hematological malignancies with heterogeneous aggressiveness and highly variable outcome, making therapeutic decisions a challenging task. We tried to discover new predictive model for T-ALL before treatment by using a specific pipeline designed to discover aberrantly active gene. RESULTS: The expression of 18 genes was significantly associated with shorter survival, including ACTRT2, GOT1L1, SPATA45, TOPAZ1 and ZPBP (5-GEC), which were used as a basis to design a prognostic classifier for T-ALL patients. The molecular characterization of the 5-GEC positive T-ALL unveiled specific characteristics inherent to the most aggressive T leukemic cells, including a drastic shut-down of genes located on the mitochondrial genome and an upregulation of histone genes, the latter characterizing high risk forms in adult patients. These cases fail to respond to the induction treatment, since 5-GEC either predicted positive minimal residual disease (MRD) or a short-term relapse in MRD negative patients. CONCLUSION: Overall, our investigations led to the discovery of a homogenous group of leukemic cells with profound alterations of their biology. It also resulted in an accurate predictive tool that could significantly improve the management of T-ALL patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Expressão Ectópica do Gene , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Prognóstico , Linfócitos T/patologia , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 116(19): 9543-9551, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988175

RESUMO

Relapsed and refractory (R/R) multiple myeloma (MM) patients have very poor prognosis. Chimeric antigen receptor modified T (CAR T) cells is an emerging approach in treating hematopoietic malignancies. Here we conducted the clinical trial of a biepitope-targeting CAR T against B cell maturation antigen (BCMA) (LCAR-B38M) in 17 R/R MM cases. CAR T cells were i.v. infused after lymphodepleting chemotherapy. Two delivery methods, three infusions versus one infusion of the total CAR T dose, were tested in, respectively, 8 and 9 cases. No response differences were noted among the two delivery subgroups. Together, after CAR T cell infusion, 10 cases experienced a mild cytokine release syndrome (CRS), 6 had severe but manageable CRS, and 1 died of a very severe toxic reaction. The abundance of BCMA and cytogenetic marker del(17p) and the elevation of IL-6 were the key indicators for severe CRS. Among 17 cases, the overall response rate was 88.2%, with 13 achieving stringent complete response (sCR) and 2 reaching very good partial response (VGPR), while 1 was a nonresponder. With a median follow-up of 417 days, 8 patients remained in sCR or VGPR, whereas 6 relapsed after sCR and 1 had progressive disease (PD) after VGPR. CAR T cells were high in most cases with stable response but low in 6 out of 7 relapse/PD cases. Notably, positive anti-CAR antibody constituted a high-risk factor for relapse/PD, and patients who received prior autologous hematopoietic stem cell transplantation had more durable response. Thus, biepitopic CAR T against BCMA represents a promising therapy for R/R MM, while most adverse effects are clinically manageable.


Assuntos
Antígeno de Maturação de Linfócitos B , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Mieloma Múltiplo , Proteínas de Neoplasias , Receptores de Antígenos Quiméricos , Adolescente , Adulto , Idoso , Autoenxertos , Antígeno de Maturação de Linfócitos B/análise , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/imunologia , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/imunologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
7.
Behav Res Methods ; 54(1): 414-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34236670

RESUMO

Measurement invariance is the condition that an instrument measures a target construct in the same way across subgroups, settings, and time. In psychological measurement, usually only partial, but not full, invariance is achieved, which potentially biases subsequent parameter estimations and statistical inferences. Although existing literature shows that a correctly specified partial invariance model can remove such biases, it ignores the model uncertainty in the specification search step: flagging the wrong items may lead to additional bias and variability in subsequent inferences. On the other hand, several new approaches, including Bayesian approximate invariance and alignment optimization methods, have been proposed; these methods use an approximate invariance model to adjust for partial measurement invariance without the need to directly identify noninvariant items. However, there has been limited research on these methods in situations with a small number of groups. In this paper, we conducted three systematic simulation studies to compare five methods for adjusting partial invariance. While specification search performed reasonably well when the proportion of noninvariant parameters was no more than one-third, alignment optimization overall performed best across conditions in terms of efficiency of parameter estimates, confidence interval coverage, and type I error rates. In addition, the Bayesian version of alignment optimization performed best for estimating latent means and variances in small-sample and low-reliability conditions. We thus recommend the use of the alignment optimization methods for adjusting partial invariance when comparing latent constructs across a few groups.


Assuntos
Teorema de Bayes , Viés , Simulação por Computador , Análise Fatorial , Humanos , Reprodutibilidade dos Testes
8.
Proc Natl Acad Sci U S A ; 115(1): E34-E43, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255034

RESUMO

To impart biomedical functions to nanoparticles (NPs), the common approach is to conjugate functional groups onto NPs by dint of the functions of those groups per se. It is still beyond current reach to create protein-like specific interactions and functions on NPs by conformational engineering of nonfunctional groups on NPs. Here, we develop a conformational engineering method to create an NP-based artificial antibody, denoted "Goldbody," through conformational reconstruction of the complementary-determining regions (CDRs) of natural antibodies on gold NPs (AuNPs). The seemingly insurmountable task of controlling the conformation of the CDR loops, which are flexible and nonfunctional in the free form, was accomplished unexpectedly in a simple way. Upon anchoring both terminals of the free CDR loops on AuNPs, we managed to reconstruct the "active" conformation of the CDR loops by tuning the span between the two terminals and, as a result, the original specificity was successfully reconstructed on the AuNPs. Two Goldbodies have been created by this strategy to specifically bind with hen egg white lysozyme and epidermal growth factor receptor, with apparent affinities several orders of magnitude stronger than that of the original natural antibodies. Our work demonstrates that it is possible to create protein-like functions on NPs in a protein-like way, namely by tuning flexible surface groups to the correct conformation. Given the apparent merits, including good stability, of Goldbodies, we anticipate that a category of Goldbodies could be created to target different antigens and thus used as substitutes for natural antibodies in various applications.


Assuntos
Anticorpos Monoclonais/química , Regiões Determinantes de Complementaridade/química , Ouro/química , Nanopartículas Metálicas/química , Conformação Proteica
9.
Proc Natl Acad Sci U S A ; 115(50): E11711-E11720, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487223

RESUMO

Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adulto , Criança , Bases de Dados de Ácidos Nucleicos , Feminino , Humanos , Masculino , Modelos Genéticos , Mutação , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética , Prognóstico , Análise de Sequência de RNA
10.
J Appl Toxicol ; 40(5): 567-577, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31869448

RESUMO

Due to excellent metal-insulator transition property, vanadium dioxide nanoparticles (VO2 NPs)-based nanomaterials are extensively studied and applied in various fields, and thus draw safety concerns of VO2 NPs exposure through various routes. Herein, the cytotoxicity of VO2 NPs (N-VO2 ) and titanium dioxide-coated VO2 NPs (T-VO2 ) to typical human lung cell lines (A549 and BEAS-2B) was studied by using a series of biological assays. It was found that both VO2 NPs induced a dose-dependent cytotoxicity, and the two cell lines displayed similar sensitivity to VO2 NPs. Under the same conditions, T-VO2 NPs showed slightly lower cytotoxicity than N-VO2 in both cells, indicating the surface coating of titanium dioxide mitigated the toxicity of VO2 NPs. Titanium dioxide coating changed the surface property of VO2 NPs and reduced the vanadium release of particles, and thus helped lowing the toxicity of VO2 NPs. The induced cell viability loss was attributed to apoptosis and proliferation inhibition, which were supported by the assays of apoptosis, mitochondrial membrane damage, caspase-3 level, and cell cycle arrest. The oxidative stress, i.e., enhanced reactive oxygen species generation and suppressed reduced glutathione , in A549 and BEAS-2B cells was one of the major mechanisms of the cytotoxicity of VO2 NPs. These findings provide safety guidance for the practical applications of vanadium dioxide-based materials.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Titânio/toxicidade , Compostos de Vanádio/toxicidade , Células A549 , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Propriedades de Superfície
11.
Small ; 15(38): e1901687, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31348602

RESUMO

The size effect on the cellular uptake of nanoparticles (NPs) has been extensively studied, but it is still not well understood. Herein, a reductionist approach is used to minimize all influencing factors except the particle size, and co-exposure of different-sized silica nanoparticles (SNPs) is adopted instead of the common single exposure. SNPs are found being internalized by Hela cells in serum-free medium mainly via clathrin-dependent endocytosis, thus simplifying the data analysis for reliable attribution to size effects. Remarkably, even though at conditions that the size effects seem very small or even undetectable in the common single exposure experiments, the co-exposure experiments reveal significant size effects due to an unexpected interplay between two different-sized SNPs. Namely, the bigger SNPs significantly promote the cellular uptake of the smaller ones, while the smaller SNPs inhibit the internalization of the bigger ones, with a total uptake increase of the particle number of SNPs in the cells. This strong interplay between different-sized NPs might unavoidably exist within most "single-sized" NP products, whose sizes actually distribute in certain ranges, thus urging reconsideration of the size effect on the cellular uptake of NPs, for the benefits of both bioapplications and safety assessment of nanomaterials.


Assuntos
Nanopartículas/química , Nanopartículas/metabolismo , Dióxido de Silício/química , Células HeLa , Humanos
12.
Ecotoxicol Environ Saf ; 164: 739-748, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30122261

RESUMO

The wide use of Ag nanoparticles (Ag NPs) as antimicrobial agents has resulted in a massive release of Ag NPs into environment, such as water and soil. As bryophytes live ubiquitously in water and soil, their tolerance and response to Ag NPs could be employed as an indicator for the harm of Ag NPs to the environment. Herein, we report the study on the physiological and biochemical responses of bryophytes to Ag NPs with different surface coatings at the gametophyte stages: protonema and leafy gametophyte, by using Physcomitrella patens as a model system. We found that Ag NPs, including AgNPs-B (Ag NPs without surface coating), AgNPs-PVP (Ag NPs coated with poly (N-vinyl-2-pyrrolidone)) and AgNPs-Cit (Ag NPs coated with citrate), were toxic to P. patens in terms of growth and development of the gametophyte. The toxicity was closely related to the concentration and surface coating of Ag NPs, and the growth stage of P. patens. The protonema was more sensitive to Ag NPs than the leafy gametophyte. Ag NPs inhibited the growth of the protonema following the trend of AgNPs-B > AgNPs-Cit > AgNPs-PVP. Ag NPs changed the thylakoid and chlorophyll contents, but did not affect the contents of essential elements in the protonema. At the leafy gametophyte stage, Ag NPs inhibited the growth of P. patens following a different order: AgNPs-Cit > AgNPs-B ≈ AgNPs-PVP. Ag NPs decreased the chlorophyll b content and disturbed the balance of some important essential elements in the leafy gametophytes. Both the dissolved fraction of Ag NPs and Ag NPs per se contributed to the toxicity. This study for the first time reveals the effects of Ag NPs on bryophytes at different growth stages, which calls for more attention to the nanoecotoxicology of Ag NPs.


Assuntos
Bryopsida/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Bryopsida/química , Clorofila/análise , Ácido Cítrico/química , Nanopartículas Metálicas/química , Metais Pesados/química , Metais Pesados/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Pirrolidinonas/química , Pirrolidinonas/toxicidade , Prata/química , Testes de Toxicidade
13.
Blood ; 124(10): 1645-54, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25006128

RESUMO

Acute myeloid leukemia (AML) is a group of hematological malignancies with high heterogeneity. There is an increasing need to improve the risk stratification of AML patients, including those with normal cytogenetics, using molecular biomarkers. Here, we report a metabolomics study that identified a distinct glucose metabolism signature with 400 AML patients and 446 healthy controls. The glucose metabolism signature comprises a panel of 6 serum metabolite markers, which demonstrated prognostic value in cytogenetically normal AML patients. We generated a prognosis risk score (PRS) with 6 metabolite markers for each patient using principal component analysis. A low PRS was able to predict patients with poor survival independently of well-established markers. We further compared the gene expression patterns of AML blast cells between low and high PRS groups, which correlated well to the metabolic pathways involving the 6 metabolite markers, with enhanced glycolysis and tricarboxylic [corrected] acid cycle at gene expression level in low PRS group. In vitro results demonstrated enhanced glycolysis contributed to decreased sensitivity to antileukemic agent arabinofuranosyl cytidine (Ara-C), whereas inhibition of glycolysis suppressed AML cell proliferation and potentiated cytotoxicity of Ara-C. Our study provides strong evidence for the use of serum metabolites and metabolic pathways as novel prognostic markers and potential therapeutic targets for AML.


Assuntos
Glucose/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HL-60 , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Células U937 , Adulto Jovem
14.
Nanotechnology ; 27(28): 285602, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27263498

RESUMO

Inspired by natural photosynthesis, the Z-scheme photocatalyst is a promising approach to extend the absorption spectra of photocatalysts and reduce the recombination of photo-generated electrons and holes. However, the fabrication of well-structured efficient multi-component Z-scheme photocatalysts is still a big challenge. We report here a facile one-pot method to synthesize graphene-based Z-scheme photocatalysts. The one-pot method guarantees good distribution of well-structured individual components on thin-layered rGO sheets with excellent connections. With inactive WO3 nanorods and inactive ß-In2S3 nanosheets attached to the surface of the rGO sheets, the synthesized In2S3/WO3/rGO tertiary nanocomposite shows excellent visible-light catalytic activity for hydrogen production at 1524 µmol g(-1) h(-1), demonstrating unambiguously the Z-scheme catalytic mechanism. To prevent cross-reactions and interferences, our strategy was to choose no more than one ionic precipitation reaction for the one-pot process, as unwanted cross-reactions could become inevitable if many cations and anions were present. This fabrication strategy should be applicable generally to synthesize other multiple-component nanocomposites, as demonstrated also by the preliminary results of the successful synthesis of the BiVO4/WO3/rGO nanocomposite (one ionic precipitation reaction and one hydrolysis reaction) and WO3/TiO2/rGO nanocomposite (two hydrolysis reactions).

15.
Int J Mol Sci ; 17(6)2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27338357

RESUMO

Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20-30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 µg/mL Ag-CIT, 0.9 µg/mL Ag-B or >1.0 µg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 µg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 µg/mL Ag-PVP remained normal as the control. Generally, 0.3 µg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure.


Assuntos
Nanopartículas Metálicas/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Apoptose , Células CACO-2 , Citratos/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Mitocôndrias/metabolismo , Polivinil/química , Pirrolidinonas/química , Espécies Reativas de Oxigênio/metabolismo , Prata/química
16.
Cancer Cell ; 12(1): 52-65, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17613436

RESUMO

Pancreatic cancer is an aggressive malignancy with morbidity rates almost equal to mortality rates because of the current lack of effective treatment options. Here, we describe a targeted approach to treating pancreatic cancer with effective therapeutic efficacy and safety in noninvasive imaging models. We developed a versatile expression vector "VISA" (VP16-GAL4-WPRE integrated systemic amplifier) and a CCKAR (cholecystokinin type A receptor) gene-based, pancreatic-cancer-specific promoter VISA (CCKAR-VISA) composite to target transgene expression in pancreatic tumors in vivo. Targeted expression of BikDD, a potent proapoptotic gene driven by CCKAR-VISA, exhibited significant antitumor effects on pancreatic cancer and prolonged survival in multiple xenograft and syngeneic orthotopic mouse models of pancreatic tumors with virtually no toxicity.


Assuntos
Modelos Biológicos , Neoplasias Pancreáticas/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Colecistocinina/genética , Transgenes
17.
J Appl Toxicol ; 35(10): 1169-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26106068

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food-related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco-2 cells, differentiated Caco-2 cells and Caco-2 monolayer. TiO2 NPs with a concentration less than 200 µg ml(-1) did not induce any toxicity in differentiated cells and Caco-2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml(-1) inhibited the growth of undifferentiated Caco-2 cells. Undifferentiated Caco-2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco-2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food.


Assuntos
Aditivos Alimentares/toxicidade , Intestinos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Acc Chem Res ; 46(3): 750-60, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23035715

RESUMO

A diverse array of carbon nanomaterials (NMs), including fullerene, carbon nanotubes (CNTs), graphene, nanodiamonds, and carbon nanoparticles, have been discovered and widely applied in a variety of industries. Carbon NMs have been detected in the environment and have a strong possibility of entering the human body. The safety of carbon NMs has thus become a serious concern in academia and society. To achieve strict biosafety assessments, researchers need to fully understand the effects and fates of NMs in the human body, including information about absorption, distribution, metabolism, excretion, and toxicity (ADME/T). To acquire the ADME data, researchers must quantify NMs, but carbon NMs are very difficult to quantify in vivo. The carbon background in a typical biological system is high, particularly compared with the much lower concentration of carbon NMs. Moreover, carbon NMs lack a specific detection signal. Therefore, isotopic labeling, with its high sensitivity and specificity, is the first choice to quantify carbon NMs in vivo. Previously, researchers have used many isotopes, including ¹³C, ¹4C, ¹²5I, ¹³¹I, ³H, 64Cu, ¹¹¹In, 86Y, 99mTc, and 67Ga, to label carbon NMs. We used these isotopic labeling methods to study the ADME of carbon NMs via different exposure pathways in animal models. Except for the metabolism of carbon NMs, which has seldom been investigated, significant amounts of data have been reported on the in vivo absorption, distribution, excretion, and toxicity of carbon NMs, which have revealed characteristic behaviors of carbon NMs, such as reticuloendothelial system (RES) capture. However, the complexity of the biological systems and diverse preparation and functionalization of the same carbon NMs have led to inconsistent results across different studies. Therefore, the data obtained so far have not provided a compatible and systematic profile of biosafety. Further efforts are needed to address these problems. In this Account, we review the in vivo quantification methods of carbon NMs, focusing on isotopic labeling and tracing methods, and summarize the related labeling, purification, bio-sampling, and detection of carbon NMs. We also address the advantages, applicable situations, and limits of various labeling and tracing methods and propose guidelines for choosing suitable labeling methods. A collective analysis of the ADME information on various carbon NMs in vivo would provide general principles for understanding the fate of carbon NMs and the effects of chemical functionalization and aggregation of carbon NMs on their ADME/T in vivo and their implications in nanotoxicology and biosafety evaluations.


Assuntos
Carbono/análise , Nanoestruturas/análise , Carbono/química , Humanos , Marcação por Isótopo , Modelos Animais , Nanoestruturas/química , Coloração e Rotulagem
19.
J Appl Toxicol ; 34(4): 424-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24302550

RESUMO

Silica nanoparticles (NPs) have been widely used in food products as an additive; however, their toxicity and safety to the human body and the environment still remain unclear. As a food additive, silica NPs firstly enter the human gastrointestinal tract along with food, thus their gastrointestinal toxicity deserves thorough study. Herein, we evaluated the toxicity of food additive silica NPs to cells originating from the gastrointestinal tract. Four silica NP samples were introduced to human gastric epithelial cell GES-1 and colorectal adenocarcinoma cell Caco-2 to investigate the effect of silica sample, exposure dose and exposure period on the morphology, viability and membrane integrity of cells. The cell uptake, cellular reactive oxygen species (ROS) level, cell cycle and apoptosis were determined to reveal the toxicity mechanism. The results indicate that all four silica NPs are safe for both GES-1 and Caco-2 cells after 24-h exposure at a concentration lower than 100 µg ml(-1) . At a higher concentration and longer exposure period, silica NPs do not induce the apoptosis/necrosis of cells, but arrest cell cycle and inhibit the cell growth. Notably, silica NPs do not pass through the Caco-2 cell monolayer after 4-h contact, indicating the low potential of silica NPs to cross the gastrointestinal tract in vivo. Our findings indicate that silica NPs could be used as a safe food additive, but more investigations, such as long-term in vivo exposure, are necessary in future studies.


Assuntos
Células Epiteliais/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Apoptose/efeitos dos fármacos , Células CACO-2 , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Aditivos Alimentares/química , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Propriedades de Superfície
20.
Cancer Innov ; 3(5): e135, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38948899

RESUMO

Background: Bone marrow is the leading site for metastasis from neuroblastoma and affects the prognosis of patients with neuroblastoma. However, the accurate diagnosis of bone marrow metastasis is limited by the high spatial and temporal heterogeneity of neuroblastoma. Radiomics analysis has been applied in various cancers to build accurate diagnostic models but has not yet been applied to bone marrow metastasis of neuroblastoma. Methods: We retrospectively collected information from 187 patients pathologically diagnosed with neuroblastoma and divided them into training and validation sets in a ratio of 7:3. A total of 2632 radiomics features were retrieved from venous and arterial phases of contrast-enhanced computed tomography (CT), and nine machine learning approaches were used to build radiomics models, including multilayer perceptron (MLP), extreme gradient boosting, and random forest. We also constructed radiomics-clinical models that combined radiomics features with clinical predictors such as age, gender, ascites, and lymph gland metastasis. The performance of the models was evaluated with receiver operating characteristics (ROC) curves, calibration curves, and risk decile plots. Results: The MLP radiomics model yielded an area under the ROC curve (AUC) of 0.97 (95% confidence interval [CI]: 0.95-0.99) on the training set and 0.90 (95% CI: 0.82-0.95) on the validation set. The radiomics-clinical model using an MLP yielded an AUC of 0.93 (95% CI: 0.89-0.96) on the training set and 0.91 (95% CI: 0.85-0.97) on the validation set. Conclusions: MLP-based radiomics and radiomics-clinical models can precisely predict bone marrow metastasis in patients with neuroblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA