Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Infect Dis ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330453

RESUMO

Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). UPEC infects bladder epithelial cells (BECs) via fusiform vesicles and escapes into the cytosol by disrupting fusiform vesicle membrane using outer membrane phospholipase PldA, and establishes biofilm-like intracellular bacterial communities (IBCs) for protection from host immune clearance. Cytosolic UPEC is captured by autophagy to form autophagosomes, then transport to lysosomes, triggering the spontaneous exocytosis of lysosomes. The mechanism by which UPEC evades autophagy to recognize and form IBCs remains unclear. Here, we demonstrate that by inhibiting autophagic flux, UPEC PldA reduces the lysosome exocytosis of BECs. By reducing intracellular PI3P levels, UPEC PldA increases the accumulation of NDP52 granules and decreases the targeting of NDP52 to autophagy, hence stalling pre-autophagosome structures. Thus, our results uncover a critical role for PldA to inhibit autophagic flux, favoring UPEC escapes from lysosome exocytosis, thereby contributing to acute UTI.

2.
Cancer Cell Int ; 24(1): 133, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622705

RESUMO

The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.

3.
Chemistry ; : e202401868, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136607

RESUMO

Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.

4.
Org Biomol Chem ; 22(9): 1782-1787, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329275

RESUMO

A mild and general methodology for the difluoromethylthiolation of cycloalkanols has been developed by employing N-difluoromethylthiophthalimide as the SCF2H radical source, in combination with an acridinium-derived organo-photosensitizer, under redox-neutral conditions. This reaction protocol demonstrates high efficiency, scalability, and mild reaction conditions, thus presenting a green approach for the rapid synthesis of distal difluoromethylthiolated alkyl ketones that are challenging to be synthesized through alternative means.

5.
Cell Biol Toxicol ; 40(1): 56, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042313

RESUMO

Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs). In patients with NSCLC, PD-L2 expression level in tumor samples was higher than in counterpart normal controls and was positively associated with patients' response to anti-PD-1 treatment. Mechanismly, PD-L2 bound its receptor Repulsive guidance molecule B (RGMB) on cancer cells and activated extracellular signal-regulated kinase (Erk) and nuclear factor κB (NFκB), leading to increased production of chemokine CCL20, which recruited Tregs and contributed to NSCLC progression. Consistently, knockdown of RGMB or NFκB p65 inhibited PD-L2-induced CCL20 production, and silencing of PD-L2 repressed Treg recruitment by NSCLC cells. Furthermore, cigarette smoke and carcinogen benzo(a)pyrene (BaP) upregulated PD-L2 in lung epithelial cells via aryl hydrocarbon receptor (AhR)-mediated transcription activation, whose deficiency markedly suppressed BaP-induced PD-L2 upregulation. These results suggest that PD-L2 mediates tobacco-induced recruitment of Tregs via the RGMB/NFκB/CCL20 cascade, and targeting this pathway might have therapeutic potentials in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL20 , Neoplasias Pulmonares , NF-kappa B , Proteína 2 Ligante de Morte Celular Programada 1 , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , NF-kappa B/metabolismo , Animais , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Camundongos , Fumar Tabaco/efeitos adversos , Transdução de Sinais , Linhagem Celular Tumoral , Masculino , Feminino
6.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066002

RESUMO

The fast and accurate reconstruction of the turbulence phase is crucial for compensating atmospheric disturbances in free-space coherent optical communication. Traditional methods suffer from slow convergence and inadequate phase reconstruction accuracy. This paper introduces a deep learning-based approach for atmospheric turbulence phase reconstruction, utilizing light intensity images affected by turbulence as the basis for feature extraction. The method employs extensive light intensity-phase samples across varying turbulence intensities for training, enabling phase reconstruction from light intensity images. The trained U-Net model reconstructs phases for strong, medium, and weak turbulence with an average processing time of 0.14 s. Simulation outcomes indicate an average loss function value of 0.00027 post-convergence, with a mean squared error of 0.0003 for individual turbulence reconstructions. Experimental validation yields a mean square error of 0.0007 for single turbulence reconstruction. The proposed method demonstrates rapid convergence, robust performance, and strong generalization, offering a novel solution for atmospheric disturbance correction in free-space coherent optical communication.

7.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000933

RESUMO

The galvanic dissolved oxygen sensor finds widespread applications in multiple critical fields due to its high precision and excellent stability. As its core sensing components, the oxygen-permeable membrane, electrode, and electrolyte significantly impact the sensor's performance. To systematically investigate the comprehensive effects of these core sensing components on the performance of galvanic dissolved oxygen sensors, this study selected six types of oxygen-permeable membranes made from two materials (Perfluoroalkoxy Polymer (PFA) and Fluorinated Ethylene Propylene Copolymer (FEP)) with three thicknesses (0.015 mm, 0.03 mm, and 0.05 mm). Additionally, five concentrations of KCl electrolyte were configured, and four different proportions of lead-tin alloy electrodes were chosen. Single-factor and crossover experiments were conducted using the OxyGuard dissolved oxygen sensor as the experimental platform. The experimental results indicate that under the same membrane thickness conditions, PFA membranes provide a higher output voltage compared to FEP membranes. Moreover, the oxygen permeability of FEP membranes is more significantly affected by temperature. Furthermore, the oxygen permeability of the membrane is inversely proportional to its thickness; the thinner the membrane, the better the oxygen permeability, resulting in a corresponding increase in sensor output voltage. When the membrane thickness is reduced from 0.05 mm to 0.015 mm, the sensor output voltage for PFA and FEP membranes increases by 86% and 74.91%, respectively. However, this study also observed that excessively thin membranes might compromise measurement accuracy. In a saturated, dissolved oxygen environment, the sensor output voltage corresponding to the six oxygen-permeable membranes used in the experiment exhibits a highly linear inverse relationship with temperature (correlation coefficient ≥ 98%). Meanwhile, the lead-tin ratio of the electrode and electrolyte concentration have a relatively minor impact on the sensor output voltage, demonstrating good stability at different temperatures (coefficient of variation ≤ 0.78%). In terms of response time, it is directly proportional to the thickness of the oxygen-permeable membrane, especially for PFA membranes. When the thickness increases from 0.015 mm to 0.05 mm, the response time extends by up to 2033.33%. In contrast, the electrode material and electrolyte concentration have a less significant effect on response time. To further validate the practical value of the experimental results, the best-performing combination of core sensing components from the experiments was selected to construct a new dissolved oxygen sensor. A performance comparison test was conducted between this new sensor and the OxyGuard dissolved oxygen sensor. The results showed that both sensors had the same response time (49 s). However, in an anaerobic environment, the OxyGuard sensor demonstrated slightly higher accuracy by 2.44%. This study not only provides a deep analysis of the combined effects of oxygen-permeable membranes, electrodes, and electrolytes on the performance of galvanic dissolved oxygen sensors but also offers scientific evidence and practical guidance for optimizing sensor design.

8.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674094

RESUMO

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Gengiva , Periodontite , Porphyromonas gingivalis , Barreira Hematoencefálica/metabolismo , Animais , Humanos , Camundongos , Vesículas Extracelulares/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/patologia , Gengiva/metabolismo , Gengiva/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Exossomos/metabolismo , Feminino , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/metabolismo
9.
J Mol Model ; 30(8): 251, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967703

RESUMO

CONTEXT: Silicon carbide nanowires (SiCNWs) are considered a promising alternative material for application in lithium-ion batteries, with researchers striving to develop new electrode materials that exhibit high capacity and high charge/discharge rate performance. To gain a deeper understanding of the application of SiCNWs in semiconductor material science and energy supply fields, we investigated the effects of nanoscale and surface lithiation on the electrical and mechanical properties of SiCNWs grown along the [111] direction. First-principles calculation was used to study their geometries, electronic structures, and associated electrochemical properties. Herein, we considered SiCNWs with full hydrogen passivation, full lithium passivation, and mixed passivation at different sizes. The formation energy indicates that the stability of SiCNWs increases with the increasing diameter, and the surface-lithiated SiC nanowires (Li-SiCNWs) are found to be energetically stable. The mixed passivated SiCNWs exhibit the properties of indirect band gap with the increase of lithium atoms on the surface, while the fully lithium passivated nanowires exhibit metallic behavior. Charge analysis shows that a portion of the electrons on the lithium atoms are transferred to the surface atoms of the nanowires and electrons prefer to cluster more near the C atoms. Additionally, Li-SiCNWs still have good mechanical resistance during the lithiation process. The stable open-circuit voltage range and theoretical capacity of these SiCNWs indicate their suitability as anode materials. METHOD: In this study, Materials Studio 8.0 was used to construct the models of the SiCNWs. And all the density functional theory (DFT) calculations were performed by the Vienna ab initio Simulation Package (VASP). The self-consistent field calculations are performed over a Monkhorst-Pack net of 1 × 1 × 6 k-points. The energy convergence criteria for the self-consistent field calculation were set to 10-5 eV/atom with a cutoff energy of 400 eV.

10.
RSC Adv ; 14(16): 11533-11540, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601706

RESUMO

Lithium (Li) ion batteries have played a great role in modern society as being extensively used in commercial electronic products, electric vehicles, and energy storage systems. However, battery safety issues have gained growing concerns as there might be thermal runaway, fire or even explosion under external abuse. To tackle these safety issues, developing non-flammable electrolytes is a promising strategy. However, the balance between the flame-retarding effect and the electrochemical performance of electrolytes remains a great challenge. Herein, we evaluate the function of ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as an effective flame-retarding additive for lithium-ion batteries. The flammability of electrolytes is greatly suppressed with the introduction of a small amount of PFPN. Moreover, PFPN exhibited excellent compatibility with LiFePO4 (LFP) cathode and graphite (Gr) anode, the electrochemical performances of LFP|Li and Gr|Li half cells are virtually unaffected. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) reveal the stable interphase between PFPN-containing electrolyte and LFP and Gr electrodes. Fourier transform infrared spectroscopy (FT-IR), Raman and nuclear magnetic resonance (NMR) spectra demonstrate the introduction of PFPN only exhibits negligible influence on the solvation structure of electrolyte. Benefiting from these merits of PFPN, the LFP|Gr cell shows desirable long-term cycling performance, which demonstrates great potential for practical application.

11.
Dalton Trans ; 53(15): 6802-6808, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38536010

RESUMO

Since exhaled ammonia (NH3) is one of the metabolic markers of liver and kidney diseases, ammonia visual sensing materials in humid environments have received extensive attention and investigation. Herein, through a tailor-made pore environment provided by metal-organic framework (MOF) materials (CH3-Cu(BDC)), we achieved NH3 anti-interference sensing with apparent color changing under humid conditions. With methyl (CH3-) functionalization, CH3-Cu(BDC) demonstrated a strong response for trace ammonia and showed high selectivity under a humid environment. Grand canonical Monte Carlo (GCMC) simulations indicated that CH3-Cu(BDC) showed stronger attraction towards NH3 molecules than H2O. Benefiting from the target changing coordination environment, CH3-Cu(BDC) showed a rapid response and simple analysis properties for patients' exhaled air. The strategy used in this study not only provides a demonstration case for NH3 colorimetric sensing with high humidity and anti-interference but also introduces a new method for painless and quick exhaled breath analysis for diagnosis of patients with kidney and liver diseases.

12.
J Colloid Interface Sci ; 669: 258-264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718579

RESUMO

For ethylene purification, C2H6-selective metal-organic frameworks (MOFs) show great potential to directly produce polymer-grade C2H4 from C2H6/C2H4 mixtures. Most C2H6-traping MOFs are ultra-microporous structures so as to strengthen multiple supramolecular interactions with C2H6. However, the narrowed pore channels of C2H6-traping MOFs cause large guest diffusion barriers, greatly hampering their practical applications. Herein, we present a feasible strategy by precisely constructing hierarchically porous MOF@COF core-shell structures to address this issue. Additional mesoporous diffusion channels were incorporated between MOF crystals through the construction of the COF shell, thereby enhancing the gas adsorption kinetics. Notably, designing a core-shell MOF@COF structure with an optimal coating amount of mesoporous COF shell will further improve the gas diffusion rate. Breakthrough experiments reveal that the tailored MOF@COF composites can effectively achieve C2H6/C2H4 separation and maintain its separation performance over five continuous measurement cycles. This investigation opens up a new avenue to solve the diffusion/transfer issues and provides more opportunities and potentials for MOF@COF composites in practical separation applications.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39141448

RESUMO

Neural implicit function based on signed distance field (SDF) has achieved impressive progress in reconstructing 3D models with high fidelity. However, such approaches can only represent closed surfaces. Recent works based on unsigned distance function (UDF) are proposed to handle both watertight and single-layered open surfaces. Nonetheless, as UDF is signless, its direct output is limited to the point cloud, which imposes an additional challenge on extracting high-quality meshes from discrete points. To address this challenge, we present a novel neural implicit representation coded HSDF, which is a hybrid of signed and unsigned distance fields. In particular, HSDF is able to represent arbitrary topologies containing both closed and open surfaces while being compatible with existing iso-surface extraction techniques for easy field-to-mesh conversion. In addition to predicting a UDF, we propose to learn an additional sign field. Unlike traditional SDF, HSDF is able to locate the surface of interest before level surface extraction by generating surface points following NDF [1]. We are then able to obtain open surfaces via an adaptive meshing approach that only instantiates regions containing surfaces into a polygon mesh. HSDF benefits downstream tasks like neural rendering, as it enables the rendering of back-faces of open surfaces. We also propose HSDF-Net, a dedicated learning framework that factorizes the learning of HSDF into two easier sub-problems. Experiments and evaluations show that HSDF outperforms the state-of-the-art techniques both qualitatively and quantitatively on some of the used datasets.

14.
Int J Nanomedicine ; 19: 4651-4665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799698

RESUMO

Introduction: Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods: We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results: The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion: Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.


Assuntos
Meios de Contraste , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Ultrassonografia , Meios de Contraste/química , Ultrassonografia/métodos , Animais , Nanopartículas/química , Dióxido de Silício/química , Humanos , Linhagem Celular Tumoral , Camundongos , Neoplasias/diagnóstico por imagem , Microbolhas , Camundongos Nus , Camundongos Endogâmicos BALB C , Indóis
15.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611242

RESUMO

The design of high-performance polyimide (PI) films and understanding the relationship of the structure-dielectric property are of great significance in the field of the microelectronics industry, but are challenging. Herein, we describe the first work to construct a series of novel tert-butyl PI films (denoted as PI-1, PI-2, PI-3, and PI-4) based on a low-temperature polymerization strategy, which employed tetracarboxylic dianhydride (pyromellitic anhydride, 3,3',4,4'-biphenyl tetracarboxylic anhydride, 4,4'-diphenyl ether dianhydride, and 3,3',4,4'-benzophenone tetracarboxylic anhydride) and 4,4'-diamino-3,5-ditert butyl biphenyl ether as monomers. The results indicate that introducing tert-butyl branches in the main chain of PIs can enhance the free volume of the molecular chain and reduce the interaction between molecular chains of PI, resulting in a low dielectric constant. Particularly, the optimized PI-4 exhibits an excellent comprehensive performance with a high (5) wt% loss temperature (454 °C), tensile strength (117.40 MPa), and maximum hydrophobic angle (80.16°), and a low dielectric constant (2.90), which outperforms most of the results reported to date.

16.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38400110

RESUMO

Vaccination-route-dependent adjuvanticity was identified as being associated with the specific features of antigen-carrying nanoparticles (NPs) in the present work. Here, we demonstrated that the mechanical properties and the decomposability of NP adjuvants play key roles in determining the antigen accessibility and thus the overall vaccine efficacy in the immune system when different vaccination routes were employed. We showed that soft nano-vaccines were associated with more efficient antigen uptake when administering subcutaneous (S.C.) vaccination, while the slow decomposition of hard nano-vaccines promoted antigen uptake when intravenous (I.V.) vaccination was employed. In comparison to the clinically used aluminum (Alum) adjuvant, the NP adjuvants were found to stimulate both humoral and cellular immune responses efficiently, irrespective of the vaccination route. For vaccination via S.C. and I.V. alike, the NP-based vaccines show excellent protection for mice from Staphylococcus aureus (S. aureus) infection, and their survival rates are 100% after lethal challenge, being much superior to the clinically used Alum adjuvant.

17.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564334

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Assuntos
Caspase 1 , Infecções por Escherichia coli , Núcleosídeo-Difosfato Quinase , Piroptose , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/patogenicidade , Animais , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Camundongos , Caspase 1/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Feminino , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transdução de Sinais
18.
Viruses ; 16(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399972

RESUMO

A recent estimate indicates that up to 23.7 million Americans suffer from long COVID, and approximately one million workers may be out of the workforce each day due to associated symptoms, leading to a USD 50 billion annual loss of salary. Post-COVID (Long COVID) neurologic symptoms are due to the initial robust replication of SARS-CoV-2 in the nasal neuroepithelial cells, leading to inflammation of the olfactory epithelium (OE) and the central nervous system (CNS), and the OE becoming a persistent infection site. Previously, our group showed that Epigallocatechin-3-gallate-palmitate (EC16) nanoformulations possess strong antiviral activity against human coronavirus, suggesting this green tea-derived compound in nanoparticle formulations could be developed as an intranasally delivered new drug to eliminate the persistent SARS-CoV-2 infection, leading to restored olfactory function and reduced inflammation in the CNS. The objective of the current study was to determine the compatibility of the nanoformulations with human nasal primary epithelial cells (HNpECs). METHODS: Nanoparticle size was measured using the ZetaView Nanoparticle Tracking Analysis (NTA) system; contact antiviral activity was determined by TCID50 assay for cytopathic effect on MRC-5 cells; post-infection inhibition activity was determined in HNpECs; and cytotoxicity for these cells was determined using an MTT assay. The rapid inactivation of OC43 (a ß-coronavirus) and 229E (α-coronavirus) viruses was further characterized by transmission electron microscopy. RESULTS: A saline-based nanoformulation containing 0.1% w/v EC16 was able to inactivate 99.9999% ß-coronavirus OC43 on direct contact within 1 min. After a 10-min incubation of infected HNpECs with a formulation containing drug-grade EC16 (EGCG-4' mono-palmitate or EC16m), OC43 viral replication was inhibited by 99%. In addition, all nanoformulations tested for their effect on cell viability were comparable to normal saline, a regularly used nasal irrigation solution. A 1-min incubation of an EC16 nanoformulation with either OC43 or 229E showed an altered viral structure. CONCLUSION: Nanoformulations containing EC16 showed properties compatible with nasal application to rapidly inactivate SARS-CoV-2 residing in the olfactory mucosa and to reduce inflammation in the CNS, pending additional formulation and safety studies.


Assuntos
COVID-19 , Catequina/análogos & derivados , Humanos , Estados Unidos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Antivirais/farmacologia , Estudos de Viabilidade , Solução Salina , Inflamação , Lipídeos
19.
Cancer Lett ; 592: 216929, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38697461

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.


Assuntos
Proliferação de Células , DNA Helicases , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos
20.
Pharmaceutics ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931912

RESUMO

Following recovery from the acute infection stage of the SARS-CoV-2 virus (COVID-19), survivors can experience a wide range of persistent Post-Acute Sequelae of COVID-19 (PASC), also referred to as long COVID. According to the US National Research Action Plan on Long COVID 2022, up to 23.7 million Americans suffer from long COVID, and approximately one million workers may be out of the workforce each day due to these symptoms, leading to a USD 50 billion annual loss of salary. Neurological symptoms associated with long COVID result from persistent infection with SARS-CoV-2 in the nasal neuroepithelial cells, leading to inflammation in the central nervous system (CNS). As of today, there is no evidence that vaccines or medications can clear the persistent viral infection in olfactory mucosa. Recently published clinical data demonstrate that only 5% of long COVID anosmia patients have fully recovered during the past 2 years, and 10.4% of COVID patients are still symptomatic 18 months post-infection. Our group demonstrated that epigallocatechin-3-gallate-monopalmitate (EC16m) nanoformulations possess strong antiviral activity against human coronavirus, suggesting that this green-tea-derived compound in nanoparticle formulations could be developed as an intranasally delivered new drug targeting the persistent SARS-CoV-2 infection, as well as inflammation and oxidative stress in the CNS, leading to restoration of neurologic functions. The objective of the current study was to evaluate the mucociliary safety of the EC16m nasal nanoformulations and their efficacy against human coronavirus. METHODS: Nanoparticle size and Zeta potential were measured using the ZetaView Nanoparticle Tracking Analysis system; mucociliary safety was determined using the MucilAir human nasal model; contact antiviral activity and post-infection inhibition against the OC43 viral strain were assessed by the TCID50 assay for cytopathic effect on MRC-5 cells. RESULTS: The saline-based EC16 mucoadhesive nanoformulations containing 0.005 to 0.02% w/v EC16m have no significant difference compared to saline (0.9% NaCl) with respect to tissue integrity, cytotoxicity, and cilia beat frequency. A 5 min contact resulted in 99.9% inactivation of ß-coronavirus OC43. OC43 viral replication was inhibited by >90% after infected MRC-5 cells were treated with the formulations. CONCLUSION: The saline-based novel EC16m mucoadhesive nasal nanoformulations rapidly inactivated human coronavirus with mucociliary safety properties comparable to saline, a solution widely used for nasal applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA