Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Nat Immunol ; 22(3): 358-369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432230

RESUMO

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Microambiente Tumoral , 5-Hidroxitriptofano/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interleucina-2/antagonistas & inibidores , Interleucina-2/genética , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células MCF-7 , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Triptofano Hidroxilase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
EMBO J ; 40(2): e106123, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33274785

RESUMO

Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.


Assuntos
Carcinogênese/genética , Células-Tronco Neoplásicas/fisiologia , Antígeno AC133/genética , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Regulação para Cima/genética , Proteínas Wnt/genética
3.
Mol Cancer ; 23(1): 34, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360682

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Camundongos Nus , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Peptídeos/genética , Regulação Neoplásica da Expressão Gênica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
4.
Anal Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262202

RESUMO

Polysaccharides, which are well-known natural macromolecules, have been recognized for their protective effects on neurons and their influence on extracellular dopamine levels in the brain. It is crucial to investigate the impact of plant polysaccharides on neurotransmission, particularly regarding the vesicular storage and exocytosis of neurotransmitters. In this study, we demonstrated the possibility of studying how the polysaccharide from Glochidion eriocarpum Champ.(GPS) affects vesicle dopamine content and the dynamics of exocytosis in pheochromocytoma (PC12) cells using single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC). Our results unambiguously demonstrate that GPS effectively enhances vesicular neurotransmitter content and alters the dynamics of exocytosis, favoring a smaller fraction of content released in exocytotic release, thereby inducing the partial release mode. These significant effects are attributed to GPS's efficient elevation of calcium influx, significant alteration in the composition of exocytosis-related membrane lipids, and enhancement of free radical scavenging ability. These findings not only establish GPS as a promising candidate for preventive or therapeutic interventions against neurodegenerative disorders but also reiterate the importance of screening native neurologic drugs with single-vesicle electrochemical approaches, the combination of SCA and IVIEC, from a neurotransmitter-centric perspective.

5.
Small ; 20(28): e2311520, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299465

RESUMO

LiCoO2 (LCO) cathode materials have attracted significant attention for its potential to provide higher energy density in current Lithium-ion batteries (LIBs). However, the structure and performance degradation are exacerbated by increasing voltage due to the catastrophic reaction between the applied electrolyte and delithiated LCO. The present study focuses on the construction of physically and chemically robust Mg-integrated cathode-electrolyte interface (MCEI) to address this issue, by incorporating Magnesium bis(trifluoromethanesulfonyl)imide (Mg[TFSI]2) as an electrolyte additive. During formation cycles, the strong MCEI is formed and maintained its 2 nm thickness throughout long-term cycling. Notably, Mg is detected not only in the robust MCEI, but also imbedded in the surface of the LCO lattice. As a result, the parasitic interfacial side reactions, surface phase reconstruction, particle cracking, Co dissolution and shuttling are considerably suppressed, resulting in long-term cycling stability of LCO up to 4.5 V. Therefore, benefit from the double protection of the strong MCEI, the Li||LCO coin cell and the Ah-level Graphite||LCO pouch cell exhibit high capacity retention by using Mg-electrolyte, which are 88.13% after 200 cycles and 90.4% after 300 cycles, respectively. This work provides a novel approach for the rational design of traditional electrolyte additives.

6.
J Transl Med ; 22(1): 507, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802851

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Assuntos
Fibronectinas , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-myc , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Proteólise , Camundongos Nus , Sequência de Bases , Movimento Celular/genética , Feminino , Camundongos
7.
Opt Lett ; 49(20): 5850-5853, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404554

RESUMO

The noble metal-based hybrid plasmon mode features low loss and strong field localization, making it widely applicable in the field of nanophotonic devices. However, due to the high loss of noble metals, the gain threshold is unacceptably high, usually larger than 0.1 µm-1. Here we present a hybrid plasmonic waveguide consisting of a SiO2 layer coated Na nanowire and a hexagonal semiconductor nanowire. Based on the high performance of the proposed waveguide, the Purcell factor exceeding 120 and a confinement factor above 90% are achieved, leading to an ultra-low gain threshold of 0.02117 µm-1. In addition, the proposed waveguide exhibits an extremely low cross talk, making it highly suitable for applications in compact photonic integrated devices. The proposed waveguide may contribute to the development of low-threshold nano-lasers and promote other applications in nanophotonics.

8.
J Chem Inf Model ; 64(11): 4500-4510, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38745385

RESUMO

Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to ß-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer ß-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-ß-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.


Assuntos
Calcitonina , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica , Humanos , Calcitonina/química , Calcitonina/metabolismo , Substituição de Aminoácidos , Mutação
9.
Cell Mol Biol Lett ; 29(1): 110, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153986

RESUMO

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS: To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS: Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION: PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.


Assuntos
Autofagia , Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas , Estresse Oxidativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Neoplasias Gástricas , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Autofagia/genética , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Estresse Oxidativo/genética , Linhagem Celular Tumoral , Camundongos , Progressão da Doença , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Masculino
10.
Chem Biodivers ; : e202401689, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136520

RESUMO

Mesophotic coral ecosystems (MCEs), located at depths ranging from 30-150 m, host some of the most diverse yet least explored marine bioresources, particularly significant for the discovery of new bioactive molecules. The fungus Beauveria sp. NBUF147, associated with an Irciniidae sponge from the mesophotic zone at a depth of 82 m, underwent chemical investigation that led to the identification of one new sterol, beautoide A (1), and one reported sterol, 3ß,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (2). Their structures were determined from analysis of spectroscopic data and X-ray crystallography. Evaluation of biological activity in prednisolone-induced osteoporotic zebrafish showed that 1 was anti-osteoclastogenic in vivo at 3.0 µM.

11.
Hu Li Za Zhi ; 71(4): 104-111, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39084898

RESUMO

This article describes the application of transition theory to assist a family with an infant with congenital complex gastroschisis. The nursing period, from March 3, 2023 to May 9, 2023, encompassed care from hospitalization to discharge. The author employed transition theory as a guide and used physical assessments, observations, and interviews for data collection as well as behavioral processes records. The primary nursing problem was identified as "preparation for family operation process enhancement/child's congenital disease and complex care needs, and the family's response to the challenges of the disease and care adaptation." The three phases of nursing care were summarized as: (1) the family adjustment to uncertainty, (2) undertaking caregiving roles and responsibilities, and (3) role development and family reconnection. The author established specific goals for each phase and provided corresponding interventions for the family. In the first phase, the author guided the family in expressing their concerns, and offered personalized health education information as well as psychological support to help them understand the progression of their child's disease and alleviate related anxiety and confusion. In the second phase, the author offered sleep guidance and customized home care schedules to support coping skill development and role functioning. In the third phase, the family was encouraged to explore the meaning of life while accompanying their child's growth in order to achieve spiritual growth and deepen the reconnection within the family. Ultimately, the family strengthened their confidence and capabilities in caregiving and embraced optimism and expectations for the future, enabling them to adapt smoothly to life after their child's return home. When families are confronted with their child's diagnosis with a congenital disease, they often find themselves in a state of self-doubt and faced with continuous challenges. Nurses may employ transition theory throughout the nursing process to better understand and address the evolving needs of both children and their families during the transition phase. Furthermore, transition theory may be applied to help nurses better assess, plan, and care for their patients, which can enhance the capabilities of families and facilitate their successful navigation through the challenging transition journey.


Assuntos
Gastrosquise , Humanos , Gastrosquise/enfermagem , Gastrosquise/psicologia , Lactente , Família/psicologia , Adaptação Psicológica
12.
Angew Chem Int Ed Engl ; 63(12): e202400502, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38279683

RESUMO

Chiral cyclopentadienyl-rhodium(III) Cpx Rh(III) catalysis has been demonstrated to be competent for catalyzing highly enantioselective aziridination of challenging unactivated terminal alkenes and nitrene sources. The chiral Cpx Rh(III) catalysis system exhibited outstanding catalytic performance and wide functional group tolerance, yielding synthetically important and highly valuable chiral aziridines with good to excellent yields and enantioselectivities (up to 99 % yield, 93 % ee). This protocol presents a novel and effective strategy for synthesizing enantioenriched aziridines from simple alkenes. Various transformations were performed on the aziridine products, illustrating the versatility and synthetic potential of this protocol for constructing highly functionalized compounds.

13.
Angew Chem Int Ed Engl ; 63(24): e202401943, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594205

RESUMO

Electrochemical C-N coupling reaction based on carbon dioxide and nitrate have been emerged as a new "green synthetic strategy" for the synthesis of urea, but the catalytic efficiency is seriously restricted by the inherent scaling relations of adsorption energies of the active sites, the improvement of catalytic activity is frequently accompanied by the decrease in selectivity. Herein, a doping engineering strategy was proposed to break the scaling relationship of intermediate binding and minimize the kinetic barrier of C-N coupling. A thus designed SrCo0.39Ru0.61O3-δ catalyst achieves a urea yield rate of 1522 µg h-1 mgcat. -1 and faradic efficiency of 34.1 % at -0.7 V versus reversible hydrogen electrode. A series of characterizations revealed that Co doping not only induces lattice distortion but also creates rich oxygen vacancies (OV) in the SrRuO3. The oxygen vacancies weaken the adsorption of *CO and *NH2 intermediates on the Co and Ru sites respectively, and the strain effects over the Co-Ru dual sites promoting the occurrence of C-N coupling of the two monomers instead of selective hydrogenating to form by-products. This work presents an insight into molecular coupling reactions towards urea synthesis via the doping engineering on SrRuO3.

14.
Small ; 19(47): e2303779, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485804

RESUMO

Urgent calls for reversible cycling performance of silicon (Si) requires an efficient solution to maintain the silicon-electrolyte interface stable. Herein, a conductive biphenyl-polyoxadiazole (bPOD) layer is coated on Si particles to enhance the electrochemical process and prolong the cells lifespan. The conformal bPOD coatings are mixed ionicelectronic conductors, which not only inhibit the infinite growth of solid electrolyte interphase (SEI) but also endow electrodes with outstanding ion/electrons transport capacity. The superior 3D porous structure in the continuous phase allows the bPOD layers to act like a sponge to buffer volume variation, resulting in high structural stability. The in situ polymerized bPOD coating and it-driven thin LiF-rich SEI layer remarkably improve the lithium storage performance of Si anodes, showing a high reversible specific capacity of 1600 mAh g-1 even after 500 cycles at 1 A g-1 along with excellent rate capacity of over 1500 mAh g-1 at 3 A g-1 . It should be noticed that a long cycle life of 800 cycles with 1065 mAh g-1 at 3 A g-1 can also be achieved with a capacity retention of more than 80%. Therefore,  we  believe this unique polymer coating design paves the way for the widespread adoption of next-generation lithium-ion batteries.

15.
J Transl Med ; 21(1): 402, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340423

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) is an RNA binding protein with multiple roles in regulation of gene expression at the post-transcriptional level and is implicated in tumorigenesis and progression of numerous cancers including gastric cancer (GC). Circular RNAs (circRNAs) are a diverse endogenous noncoding RNA population that have important regulatory roles in cancer. However, circRNAs that regulate the expression of IGF2BP3 in GC is largely unknown. METHODS: CircRNAs that bound to IGF2BP3 were screened in GC cells using RNA immunoprecipitation and sequencing (RIP-seq). The identification and localization of circular nuclear factor of activated T cells 3 (circNFATC3) were identified using Sanger sequencing, RNase R assays, qRT-PCR, nuclear-cytoplasmic fractionation and RNA-FISH assays. CircNFATC3 expression in human GC tissues and adjacent normal tissues were measured by qRT-PCR and ISH. The biological role of circNFATC3 in GC was confirmed by in vivo and in vitro experiments. Furthermore, RIP, RNA-FISH/IF, IP and rescue experiments were performed to uncover interactions between circNFATC3, IGF2BP3 and cyclin D1 (CCND1). RESULTS: We identified a GC-associated circRNA, circNFATC3, that interacted with IGF2BP3. CircNFATC3 was significantly overexpressed in GC tissues and was positively associated with tumor volume. Functionally, the proliferation of GC cells decreased significantly after circNFATC3 knockdown in vivo and in vitro. Mechanistically, circNFATC3 bound to IGF2BP3 in the cytoplasm, which enhanced the stability of IGF2BP3 by preventing ubiquitin E3 ligase TRIM25-mediated ubiquitination, thereby enhancing the regulatory axis of IGF2BP3-CCND1 and promoting CCND1 mRNA stability. CONCLUSIONS: Our findings demonstrate that circNFATC3 promotes GC proliferation by stabilizing IGF2BP3 protein to enhance CCND1 mRNA stability. Therefore, circNFATC3 is a potential novel target for the treatment of GC.


Assuntos
RNA Circular , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , RNA/genética , Estabilidade de RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologia , Ubiquitinação
16.
Chemistry ; 29(35): e202300592, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078523

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the main cause of dementia worldwide. As the pathogenesis of AD is quite complicated, there is continuous attention to AD-associated active species, such as amyloid-ß plaques, neurofibrillary tangles, metal ions, reactive oxygen/nitrogen/sulphur species, cholinesterase, viscosity, formaldehyde and so on. To this end, a series of small molecular fluorescent probes for these active species have been explored for early diagnosis and even remedy of AD. Herein, we systematacially summarize the versatile fluorescent probes mainly in recent three years, including the relationship between the structure and properties as well as the targeted diagnosis and imaging application of all these fluorescent probes. Moreover, the challenges and perspectives of the AD-related fluorescent probes are briefly explicated. We firmly expect this review may provide guidance for constructing new AD-relevant fluorescent probes and promote the clinical study of AD.


Assuntos
Doença de Alzheimer , Humanos , Animais , Doença de Alzheimer/diagnóstico , Corantes Fluorescentes/química , Bibliotecas de Moléculas Pequenas/química , Proteínas tau/química , Peptídeos beta-Amiloides/química , Colinesterases/metabolismo
17.
Mol Pharm ; 20(2): 789-809, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36598861

RESUMO

Cancer has become the primary reason for industrial countries death. Although first-line treatments have achieved remarkable results in inhibiting tumors, they could have serious side effects because of insufficient selectivity. Therefore, specific localization of tumor cells is currently the main desire for cancer treatment. In recent years, cell-penetrating peptides (CPPs), as a kind of promising delivery vehicle, have attracted much attention because they mediate the high-efficiency import of large quantities of cargos in vivo and vitro. Unfortunately, the poor targeting of CPPs is still a barrier to their clinical application. In order to solve this problem, researchers use the various characteristics of tumor microenvironment and multiple receptors to improve the specificity toward tumors. This review focuses on the characteristics of the tumor microenvironment, and introduces the development of strategies and peptides based on these characteristics as drug delivery system in the tumor-targeted therapy.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Humanos , Microambiente Tumoral , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos Penetradores de Células/farmacologia
18.
Langmuir ; 39(46): 16415-16421, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933492

RESUMO

Non-noble metal oxides have emerged as potential candidate electrocatalysts for acidic oxygen evolution reactions (OERs) due to their earth abundance; however, improving their catalytic activity and stability simultaneously in strong acidic electrolytes is still a major challenge. In this work, we report Co3O4@carbon core-shell nanoparticles on 2D graphite sheets (Co3O4@C-GS) as mixed-dimensional hybrid electrocatalysts for acidic OER. The obtained Co3O4@C-GS catalyst exhibits a low overpotential of 350 mV and maintains stability for 20 h at a current density of 10 mA cm-2 in H2SO4 (pH = 1) electrolyte. X-ray photoelectron and X-ray absorption spectroscopies illustrate that the higher content of Co3+ sites boosts acidic OER. Operando Raman spectroscopy reveals that the catalytic stability of Co3O4@C nanoparticles during the acidic OER is enhanced by the introduction of graphite sheets. This interface engineering of non-noble metal sites with high valence states provides an efficient approach to boost the catalytic activity and enhance the stability of noble-metal-free electrocatalysts for acidic OER.

19.
Analyst ; 148(21): 5303-5321, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37796086

RESUMO

Inflammation as an adaptive response underlies a wide variety of physiological and pathological processes. The progression of inflammation is closely intertwined with various bioactive molecules. To dissect the biological mechanisms and physiopathological functions of these molecules, exploitation of versatile detection mean is of great importance. Fluorescence imaging technique has been widely employed to track bioactive species in living systems. As a result, many small-molecule fluorescent probes for bioactive species in inflammatory disease have been developed. However, this interesting and frontier topic hasn't been systematically categorized. Therefore, in this review, we have generalized the construction strategies and biological imaging applications of small-molecule fluorescent probes for various bioactive species, including reactive oxygen/nitrogen/sulfur species, enzyme, mainly in arthritis, pneumonia and hepatitis. Moreover, the future challenges in constructing novel fluorescent probes for inflammatory disease are also present. This review will facilitate the comprehension of superior fluorescent probes for active molecules associated with inflammation.


Assuntos
Artrite , Hepatite , Pneumonia , Humanos , Corantes Fluorescentes , Espécies Reativas de Oxigênio , Espécies Reativas de Nitrogênio , Hepatite/diagnóstico , Inflamação/diagnóstico por imagem
20.
J Chem Inf Model ; 63(1): 308-320, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36456917

RESUMO

Human calcitonin (hCT) is a polypeptide hormone that participates in calcium-phosphorus metabolism. Irreversible aggregation of 32-amino acid hCT into ß-sheet-rich amyloid fibrils impairs physiological activity and increases the risk of medullary carcinoma of the thyroid. Amyloid-resistant hCT derivatives substituting critical amyloidogenic residues are of particular interest for clinical applications as therapeutic drugs against bone-related diseases. Uncovering the aggregation mechanism of hCT at the molecular level, therefore, is important for the design of amyloid-resistant hCT analogues. Here, we investigated the aggregation dynamics of hCT, non-amyloidogenic salmon calcitonin (sCT), and two hCT analogues with reduced aggregation tendency─TL-hCT and phCT─using long timescale discrete molecular dynamics simulations. Our results showed that hCT monomers mainly adopted unstructured conformations with dynamically formed helices around the central region. hCT self-assembled into helix-rich oligomers first, followed by a conformational conversion into ß-sheet-rich oligomers with ß-sheets formed by residues 10-30 and stabilized by aromatic and hydrophobic interactions. Our simulations confirmed that TL-hCT and phCT oligomers featured more helices and fewer ß-sheets than hCT. Substitution of central aromatic residues with leucine in TL-hCT and replacing C-terminal hydrophobic residue with hydrophilic amino acid in phCT only locally suppressed ß-sheet propensities in the central region and C-terminus, respectively. Having mutations in both central and C-terminal regions, sCT monomers and dynamically formed oligomers predominantly adopted helices, confirming that both central aromatic and C-terminal hydrophobic residues played important roles in the fibrillization of hCT. We also observed the formation of ß-barrel intermediates, postulated as the toxic oligomers in amyloidosis, for hCT but not for sCT. Our computational study depicts a complete picture of the aggregation dynamics of hCT and the effects of mutations. The design of next-generation amyloid-resistant hCT analogues should consider the impact on both amyloidogenic regions and also take into account the amplification of transient ß-sheet population in monomers upon aggregation.


Assuntos
Amiloide , Calcitonina , Humanos , Calcitonina/química , Calcitonina/genética , Calcitonina/metabolismo , Amiloide/química , Proteínas Amiloidogênicas , Conformação Proteica em Folha beta , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA