Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Immunity ; 57(7): 1567-1585.e5, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38821051

RESUMO

Conventional dendritic cells (cDC) are antigen-presenting cells comprising cDC1 and cDC2, responsible for priming naive CD8+ and CD4+ T cells, respectively. Recent studies have unveiled cDC2 heterogeneity and identified various cDC2 progenitors beyond the common DC progenitor (CDP), hinting at distinct cDC2 lineages. By generating Cd300ciCre-hCD2R26tdTomato reporter mice, we identified a bone marrow pro-cDC2 progenitor exclusively generating cDC2 in vitro and in vivo. Single-cell analyses and multiparametric flow cytometry demonstrated that pro-cDC2 encompasses myeloid-derived pre-cDC2 and lymphoid-derived plasmacytoid DC (pDC)-like precursors differentiating into a transcriptionally convergent cDC2 phenotype. Cd300c-traced cDC2 had distinct transcriptomic profiles, phenotypes, and tissue distributions compared with Ms4a3CreR26tdTomato lineage-traced DC3, a monocyte-DC progenitor (MDP)-derived subset that bypasses CDP. Mice with reduced Cd300c-traced cDC2 showed impaired humoral responses to T cell-dependent antigens. We conclude that progenitors of distinct lineages shape the diversity of mature cDC2 across tissues. Thus, ontogenesis may impact tissue immune responses.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Dendríticas , Animais , Células Dendríticas/imunologia , Camundongos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Camundongos Transgênicos
2.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309272

RESUMO

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Animais , Camundongos , Microglia , Encéfalo/metabolismo , Osteopontina/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542100

RESUMO

The marine bacterium Streptomyces sp. HNS054 shows promise as a platform for producing natural products. Isolated from a marine sponge, HNS054 possesses several desirable traits for bioengineering: rapid growth, salt tolerance, and compatibility with genetic tools. Its genome contains 21 potential biosynthetic gene clusters, offering a rich source of natural products. We successfully engineered HNS054 to increase the production of aborycin and actinorhodin by 4.5-fold and 1.2-fold, respectively, compared to S. coelicolor M1346 counterparts. With its unique features and amenability to genetic manipulation, HNS054 emerges as a promising candidate for developing novel marine-derived drugs and other valuable compounds.


Assuntos
Actinobacteria , Produtos Biológicos , Streptomyces coelicolor , Streptomyces , Actinobacteria/genética , Biologia Sintética , Streptomyces/genética , Genômica , Produtos Biológicos/farmacologia , Família Multigênica , Streptomyces coelicolor/genética
4.
Biomark Res ; 12(1): 1, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185636

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.

5.
Sci Rep ; 14(1): 62, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167979

RESUMO

The percentage of macrophage subpopulations based on their origins in the adult cochlea remains unclear. This study aimed to elucidate the origins of cochlear macrophages during the onset phase and development of auditory function. We used three types of mice: wildtype ICR mice, colony-stimulating factor 1 receptor (Csf1r)-deficient mice, and Ms4a3Cre-Rosa tdTomato (Ms4a3tdT) transgenic mice. Macrophages were labeled with ionized calcium-binding adapter molecule 1 (Iba1), which is specific to more mature macrophages, and CD11b, which is specific to monocyte lineage. We investigated the spatial and temporal distribution patterns of resident macrophages in the cochlea during the postnatal and early adult stages. During the adult stages, the rate of monocytes recruited from the systemic circulation increased; moreover, Iba1+/CD11b- cochlear macrophages gradually decreased with age. Fate mapping of monocytes using Ms4a3tdT transgenic mice revealed an increased proportion of bone marrow-derived cochlear macrophages in the adult stage. Contrastingly, the proportion of yolk sac- and fetal liver-derived tissue-resident macrophages decreased steadily with age. This heterogeneity could be attributed to differences in environmental niches within the tissue or at the sub-tissue levels. Future studies should investigate the role of cochlear macrophages in homeostasis, inflammation, and other diseases, including infection, autoimmune, and metabolic diseases.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Camundongos Endogâmicos ICR , Macrófagos/metabolismo , Camundongos Transgênicos , Cóclea , Homeostase
6.
Nat Commun ; 15(1): 811, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280871

RESUMO

Eosinophils are a group of granulocytes well known for their capacity to protect the host from parasites and regulate immune function. Diverse biological roles for eosinophils have been increasingly identified, but the developmental pattern and regulation of the eosinophil lineage remain largely unknown. Herein, we utilize the zebrafish model to analyze eosinophilic cell differentiation, distribution, and regulation. By identifying eslec as an eosinophil lineage-specific marker, we establish a Tg(eslec:eGFP) reporter line, which specifically labeled cells of the eosinophil lineage from early life through adulthood. Spatial-temporal analysis of eslec+ cells demonstrates their organ distribution from larval stage to adulthood. By single-cell RNA-Seq analysis, we decipher the eosinophil lineage cells from lineage-committed progenitors to mature eosinophils. Through further genetic analysis, we demonstrate the role of Cebp1 in balancing neutrophil and eosinophil lineages, and a Cebp1-Cebpß transcriptional axis that regulates the commitment and differentiation of the eosinophil lineage. Cross-species functional comparisons reveals that zebrafish Cebp1 is the functional orthologue of human C/EBPεP27 in suppressing eosinophilopoiesis. Our study characterizes eosinophil development in multiple dimensions including spatial-temporal patterns, expression profiles, and genetic regulators, providing for a better understanding of eosinophilopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Eosinófilos , Peixe-Zebra , Animais , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Eosinófilos/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
7.
Nat Commun ; 15(1): 6131, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033133

RESUMO

One question in lymphocyte homing is how integrins are rapidly activated to enable immediate arrest of fast rolling lymphocytes upon encountering chemokines at target vascular beds given the slow chemokine-induced integrin inside-out activation. Herein we demonstrate that chemokine CCL25-triggered Ca2+ influx induces T cell membrane-proximal external Ca2+ concentration ([Ca2+]ex) drop in 6 s from physiological concentration 1.2 mM to 0.3 mM, a critical extracellular Ca2+ threshold for inducing αLß2 activation, triggering rapid αLß2 activation and T cell arrest before occurrence of αLß2 inside-out activation. Talin knockdown inhibits the slow inside-out activation of αLß2 but not [Ca2+]ex drop-triggered αLß2 quick activation. Blocking Ca2+ influx significantly suppresses T cell rolling-to-arrest transition and homing to skin lesions in a mouse psoriasis model, thus alleviating skin inflammation. [Ca2+]ex decrease-triggered rapid integrin activation bridges the gap between initial chemokine stimulation and slow integrin inside-out activation, ensuring immediate lymphocyte arrest and subsequent diapedesis on the right location.


Assuntos
Cálcio , Linfócitos T , Talina , Animais , Cálcio/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Humanos , Psoríase/metabolismo , Psoríase/imunologia , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo , Integrinas/metabolismo , Sinalização do Cálcio , Pele/metabolismo
8.
Cell Rep ; 43(5): 114250, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38762882

RESUMO

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.


Assuntos
Encéfalo , Microglia , Células Mieloides , Fenótipo , Acidente Vascular Cerebral , Animais , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Células Mieloides/metabolismo , Microglia/patologia , Microglia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/patologia
9.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058763

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Monócitos , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Monócitos/imunologia , Humanos , Camundongos , Macrófagos Associados a Tumor/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA