Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762477

RESUMO

Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.


Assuntos
RNA Longo não Codificante , Abelhas/genética , Animais , Larva/genética , RNA Longo não Codificante/genética , Antioxidantes , Imunidade
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674732

RESUMO

MiRNAs are critical regulators of numerous physiological and pathological processes. Ascosphaera apis exclusively infects bee larvae and causes chalkbrood disease. However, the function and mechanism of miRNAs in the bee larval response to A. apis infection is poorly understood. Here, ame-miR-34, a previously predicted miRNA involved in the response of Apis mellifera larvae to A. apis invasion, was subjected to molecular validation, and overexpression and knockdown were then conducted to explore the regulatory functions of ame-miR-34 in larval body weight and immune response. Stem-loop RT-PCR and Sanger sequencing confirmed the authenticity of ame-miR-34 in the larval gut of A. mellifera. RT-qPCR results demonstrated that compared with that in the uninfected larval guts, the expression level of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae, indicative of the remarkable suppression of host ame-miR-34 due to A. apis infection. In comparison with the corresponding negative control (NC) groups, the expression level of ame-miR-34 in the larval guts in the mimic-miR-34 group was significantly upregulated (p < 0.001), while that in the inhibitor-miR-34 group was significantly downregulated (p < 0.01). Similarly, effective overexpression and knockdown of ame-miR-34 were achieved. In addition, the body weights of 5- and 6-day-old larvae were significantly increased compared with those in the mimic-NC group; the weights of 5-day-old larvae in the inhibitor-miR-34 group were significantly decreased in comparison with those in the inhibitor-NC group, while the weights of 4- and 6-day-old larvae in the inhibitor-miR-34 group were significantly increased, indicating the involvement of ame-miR-34 in modulating larval body weight. Furthermore, the expression levels of both hsp and abct in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae were significantly upregulated after ame-miR-34 overexpression. In contrast, after ame-miR-34 knockdown, the expression levels of the aforementioned two key genes in the A. apis-infected 4-, 5-, and 6-day-old larval guts were significantly downregulated. Together, the results demonstrated that effective overexpression and knockdown of ame-miR-34 in both noninfected and A. apis-infected A. mellifera larval guts could be achieved by the feeding method, and ame-miR-34 exerted a regulatory function in the host immune response to A. apis invasion through positive regulation of the expression of hsp and abct. Our findings not only provide a valuable reference for the functional investigation of bee larval miRNAs but also reveal the regulatory role of ame-miR-34 in A. mellifera larval weight and immune response. Additionally, the results of this study may provide a promising molecular target for the treatment of chalkbrood disease.


Assuntos
Arthrodermataceae , Abelhas , MicroRNAs , Animais , Abelhas/genética , Abelhas/imunologia , Abelhas/microbiologia , Peso Corporal , Imunidade , Larva/imunologia , MicroRNAs/genética , MicroRNAs/metabolismo , Arthrodermataceae/fisiologia
3.
Front Microbiol ; 15: 1355035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650880

RESUMO

In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.

4.
Front Cell Dev Biol ; 12: 1391717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045457

RESUMO

Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that can participate in biological processes such as gene expression, growth, and development. However, little has been explored about the function of circRNAs in the development of Apis cerana larval guts. By using our previously gained deep sequencing data from the guts of A. cerana worker larvae at 4-, 5-, and 6-day-old (Ac4, Ac5, and Ac6 groups), the expression pattern and regulatory role of circular RNAs (circRNAs) during the development process was comprehensively investigated, with a focus on differentially expressed circRNAs (DEcircRNAs) relevant to immunity pathways and developmental signaling pathways, followed by validation of the binding relationships among a key competing endogenous RNA (ceRNA) axis. Here, 224 (158) DEcircRNAs were detected in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group. It's suggested that 172 (123) parental genes of DEcircRNAs were involved in 26 (20) GO terms such as developmental process and metabolic process and 138 (136) KEGG pathways like Hippo and Wnt signaling pathways. Additionally, ceRNA network analysis indicated that 21 (11) DEcircRNAs could target seven (three) DEmiRNAs, further targeting 324 (198) DEmRNAs. These DEmRNAs can be annotated to 33 (26) GO terms and 168 (200) KEGG pathways, including 12 (16) cellular and humoral immune pathways (endocytosis, lysosome, Jak-STAT, etc.) and 10 (nine) developmental signaling pathways (Hippo, mTOR, Hedgehog, etc.). Interestingly, DEcircRNAs in these two comparison groups could target the same ace-miR-6001-y, forming complex sub-networks. The results of PCR and Sanger sequencing confirmed the back-splicing sites within four randomly selected DEcircRNAs. RT-qPCR detection of these four DEcircRNAs verified the reliability of the used transcriptome data. The results of dual-luciferase reporter assay verified the binding relationships between novel_circ_001627 and ace-miR-6001-y and between ace-miR-6001-y and apterous-like. Our data demonstrated that DEcircRNAs were likely to modulate the developmental process of the A. cerana worker larval guts via regulation of parental gene transcription and ceRNA network, and novel_circ_001627/ace-miR-6001-y/apterous-like was a potential regulatory axis in the larval gut development. Findings from this work offer a basis and a candidate ceRNA axis for illustrating the circRNA-modulated mechanisms underlying the A. cerana larval guts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA