Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340597

RESUMO

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Assuntos
Poluentes Ambientais , Oryza , Antioxidantes/metabolismo , Plântula , Oryza/metabolismo , Pentanóis/metabolismo , Pentanóis/farmacologia , 1-Butanol/metabolismo , 1-Butanol/farmacologia , Poluentes Ambientais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
2.
Physiol Plant ; 175(3): e13938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243874

RESUMO

Cinnamaldehyde (CA) is a volatile plant secondary metabolite that exhibits strong anti-pathogenic activities. Nonetheless, less is known about the effect of CA on plant tolerance to abiotic stresses. In this study, we delineated the effects of CA fumigation on rice roots (Oryza Sativa L cv. TNG67) under salinity stress (200 mM NaCl). Our result showed that CA vapor significantly alleviated salinity-induced ROS accumulation and cell death. This CA-induced alleviation appears to be mediated primarily by the upregulation of proline metabolism genes, the rapid proline accumulation, and the decrease of Na+ /K+ ratio as early as 3 h after NaCl treatment. Of note, the activities of peroxidase (POD; EC 1.11.1.7) isozymes a and b were decreased by CA fumigation, and the activities of catalase (CAT; EC 1.11.1.6) and superoxide dismutase (SOD; EC 1.15.1.1) were not significantly affected. Our findings suggest that CA vapor might be useful for priming rice roots to withstand salinity stress, which is more prevalent due to the ongoing global climate change. To the best of our knowledge, this is the first study to show modulation of macro- and micro-elements as well as antioxidative factors after CA fumigation of salinity-stressed rice roots.


Assuntos
Oryza , Oryza/genética , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Antioxidantes/metabolismo , Prolina/metabolismo , Salinidade
3.
Plant Mol Biol ; 84(1-2): 203-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24222213

RESUMO

Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , Orchidaceae/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Dados de Sequência Molecular , Família Multigênica , Orchidaceae/química , Filogenia , Proteínas de Plantas/genética
4.
BMC Genet ; 12: 1, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21205287

RESUMO

BACKGROUND: Tetraena mongolica (Zygophyllaceae), an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation. RESULTS: Sequence variation and spatial apportionment of the atpB-rbcL noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations. CONCLUSIONS: Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Zygophyllaceae/genética , China , Demografia , Fluxo Gênico , Genética Populacional , Filogeografia , Alinhamento de Sequência
5.
PLoS One ; 11(8): e0161713, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561108

RESUMO

Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration.


Assuntos
Biomassa , Variação Genética , Juniperus/genética , Altitude , Biodiversidade , Loci Gênicos , Aquecimento Global , Taiwan
6.
J Plant Physiol ; 161(6): 709-13, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15266718

RESUMO

In the day-neutral plant Polianthes tuberosa (cv. Double) putrescine and spermine in corms at the early floral initiation stage decreased by 26 and 36%, respectively, compared with that in the vegetative stage. In contrast, a sharp increase in spermidine and cadaverine titers in corms was recorded at the early floral initiation stage. However, cadaverine in corms disappeared at the flower development stage. Polyamines in the roots were generally lower than those in the leaves and corms. In no case was the change in endogenous polyamine titers in the roots and leaves associated with floral initiation and flower development in P. tuberosa. Exogenous application of spermidine at 5, 25 or 150 microg per plant at the vegetative stage did not affect flower primordium counts. However, addition of a spermidine synthase inhibitor, cyclohexylamine, at 150 or 250 microg per plant (each dose was applied two times in total at an interval of 4 days) significantly reduced flower primordium counts, indicating that spermidine is involved in floral initiation and floral development in P. tuberosa. In P. tuberosa corms at the vegetative stage arginine decarboxylase activity rises and decreases at the early floral initiation stage. In contrast, ornithine decarboxylase activity reaches the highest level at the early floral initiation stage and declines significantly at the vegetative stage. Results indicate that an increase in spermidine and a transient increase in cadaverine titers in the corms seem characteristic of early floral initiation in P. tuberosa. It is also suggested that a significant reduction in putrescine and spermine in the corms is involved in the early floral initiation in P. tuberosa.


Assuntos
Asparagaceae/crescimento & desenvolvimento , Flores/fisiologia , Poliaminas/metabolismo , Asparagaceae/enzimologia , Carboxiliases/metabolismo , Ornitina Descarboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA