Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 17038-17053, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221535

RESUMO

Nanosecond laser-induced grating scattering/spectroscopy (LIGS) technique has been widely applied for measuring thermodynamic parameters such as temperature and pressure in gaseous and liquid media. Recently, femtosecond (fs) laser was demonstrated to induce the grating and develop the fs-LIGS technique for gas thermometry. In this work, we systematically investigated the fs-LIGS signal generation using 35 fs, 800 nm laser pulses at 1 kHz repetition rate in ambient air by varying the pump laser energies, the probe laser powers and the temporal delays between two pump laser pulses. The stability of single-shot fs-LIGS signal was studied, from which we observed that the signal intensity exhibits a significant fluctuation while the oscillation frequency shows a much better stability. A 4.5% precision of the oscillation frequency was achieved over 100 single-shot signals. By using a previously-developed empirical model, the fs-LIGS signals were fitted using nonlinear least-squares fitting method, by which crucial time constants characterizing the signal decay process were extracted and their dependences on the pump laser energy were studied. From the measured results and theoretical analysis, we found that the appropriate range of the overall pump laser energy for reliable fs-LIGS measurements is approximately located within 80 ∼ 300 µJ. The limitations on the accuracy and precision of the fs-LIGS measurements, the origin of destructive influence of plasma generation on the signal generation as well as the electrostriction contribution were also discussed. Our investigations could contribute to a better understanding of the fs-LIGS process and further applications of the technique in single-shot gas thermometry and pressure measurements in various harsh conditions.

2.
Opt Lett ; 47(7): 1859-1862, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363754

RESUMO

Gas-phase pressure measurements remain challenging in situations where local pressure rapidly changes or in hostile environments such as turbulent combustion. In this work, we demonstrate the implementation of the recently developed femtosecond laser-induced grating scattering (fs-LIGS) technique for pressure measurement in ambient air. With an overall femtosecond laser pulse energy of 185 µJ, fs-LIGS signals were generated for various gas pressure ranging from 0.2 to 3.0 bar. By theoretically fitting the signal and extracting the time constant of the stationary density modulation damping, the pressure is successfully derived. The derived values were compared to the gauge pressure, which shows a quasi-linear dependence with a slope of 0.96, suggesting the feasibility of the fs-LIGS technique for gas-phase pressure measurements.

3.
Phys Rev Lett ; 129(27): 273201, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638297

RESUMO

We propose and study the manipulation of the macroscopic transient absorption of an ensemble of open two-level systems via temporal engineering. The key idea is to impose an ultrashort temporal gate on the polarization decay of the system by transient absorption spectroscopy, thus confining its free evolution and the natural reshaping of the excitation pulse. The numerical and analytical results demonstrate that even at moderate optical depths, the resonant absorption of light can be reduced or significantly enhanced by more than 5 orders of magnitude relative to that without laser manipulation. The achievement of the quasicomplete extinction of light at the resonant frequency, here referred to as resonant perfect absorption, arises from the full destructive interference between the excitation pulse and its subpulses developed and tailored during propagation, and is revealed to be connected with the formation of zero-area pulses in the time domain.

4.
Proc Natl Acad Sci U S A ; 112(51): 15613-8, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26647182

RESUMO

Controlling chemical reactions by light, i.e., the selective making and breaking of chemical bonds in a desired way with strong-field lasers, is a long-held dream in science. An essential step toward achieving this goal is to understand the interactions of atomic and molecular systems with intense laser light. The main focus of experiments that were performed thus far was on quantum-state population changes. Phase-shaped laser pulses were used to control the population of final states, also, by making use of quantum interference of different pathways. However, the quantum-mechanical phase of these final states, governing the system's response and thus the subsequent temporal evolution and dynamics of the system, was not systematically analyzed. Here, we demonstrate a generalized phase-control concept for complex systems in the liquid phase. In this scheme, the intensity of a control laser pulse acts as a control knob to manipulate the quantum-mechanical phase evolution of excited states. This control manifests itself in the phase of the molecule's dipole response accessible via its absorption spectrum. As reported here, the shape of a broad molecular absorption band is significantly modified for laser pulse intensities ranging from the weak perturbative to the strong-field regime. This generalized phase-control concept provides a powerful tool to interpret and understand the strong-field dynamics and control of large molecules in external pulsed laser fields.

5.
Appl Opt ; 55(36): 10318-10322, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28059252

RESUMO

In time-resolved spectroscopy, it is a widespread belief that the temporal resolution is determined by the laser pulse duration. Recently, it was observed and shown that partially coherent laser pulses as they are provided by free-electron-laser (FEL) sources offer an alternative route to reach a temporal resolution below the average pulse duration. Here, we demonstrate the generation of partially coherent light in the laboratory like we observe it at FELs. We present the successful implementation of such statistically fluctuating pulses by using the pulse-shaping technique. These pulses exhibit an average pulse duration about 10 times larger than their bandwidth limit. The shaped pulses are then applied to transient-absorption measurements in the dye IR144. Despite the noisy characteristics of the laser pulses, features in the measured absorption spectra occurring on time scales much faster than the average pulse duration are resolved, thus proving the universality of the described noisy-pulse concept.

6.
Phys Rev Lett ; 115(3): 033003, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230787

RESUMO

The evolution of a V-type three-level system is studied, whose two resonances are coherently excited and coupled by two ultrashort laser pump and probe pulses, separated by a varying time delay. We relate the quantum dynamics of the excited multilevel system to the absorption spectrum of the transmitted probe pulse. In particular, by analyzing the quantum evolution of the system, we interpret how atomic phases are differently encoded in the time-delay-dependent spectral absorption profiles when the pump pulse either precedes or follows the probe pulse. This scheme is experimentally applied to atomic Rb, whose fine-structure-split 5s (2)S{1/2}→5p(2)P{1/2} and 5s(2)S_{1/2}→5p(2)P{3/2} transitions are driven by the combined action of a pump pulse of variable intensity and a delayed probe pulse. The provided understanding of the relationship between quantum phases and absorption spectra represents an important step towards full time-dependent phase reconstruction (quantum holography) of bound-state wave packets in strong-field light-matter interactions with atoms, molecules, and solids.

7.
Anal Chim Acta ; 1328: 343183, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266199

RESUMO

BACKGROUND: Laser-induced breakdown spectroscopy (LIBS) is a versatile analytical technique for element determination in solids, liquids, and gases. However, LIBS suffers from low detection sensitivity and high relative standard deviation (RSD), restricting its large-scale applications. the process of a physical sampling can, in some cases, compromise the mechanical strength of the component under examination. It should be considered that too large laser energy is bound to cause damage to samples which cannot be tolerated in the process of safe production in the nuclear industry. It is necessary to find a method to obtain high elemental signal intensity in low energy laser. RESULTS: Here, we present a novel approach by integrating microwave plasma torch (MPT) with LIBS, referred to as MPT-LIBS, which effectively addresses the limitations associated with traditional LIBS. The MPT-LIBS technique is evaluated using Cu samples with a low laser pulse energy of 0.55 mJ. A remarkable enhancement factor of over 70 for Cu I 521.82 nm line is demonstrated, while that of Cu I 324.75 nm and 327.40 nm lines exceeding two orders of magnitude. Furthermore, the RSDs of all Cu spectral lines are reduced, especially for Cu I 521.82 nm, which is decreased from 11.48 % to 1.36 %. This indicates a significant improvement in signal stability. Characterization of the tested samples using con-focal microscopy reveals that the ablation area of MPT-LIBS is only 1.36 times of that of LIBS. The limit of detection of Cu I 324.75 nm line is reduced from 52.8 ppk to 319 ppm. SIGNIFICANCE AND NOVELTY: This study not only offers valuable guidance for improving signal stability and the limit of detection in LIBS, but also demonstrates minimal sample damage due to its low ablation amount. Consequently, the proposed methodology has the potential to significantly advance LIBS technology, expanding its applicability in industrial applications.

8.
Opt Express ; 21 Suppl 4: A704-13, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24104497

RESUMO

In this paper, the effect of laser pulse energy on orthogonal double femtosecond pulse laser induced breakdown spectroscopy (LIBS) in air is studied. In the experiment, the energy of the probe pulse is changeable, while the pump pulse energy is held constant. At the same time, a systematic study of the laser induced breakdown spectroscopy signal dependence on the inter-pulse delay between the two pulses is performed. It is noted that the double pulse orthogonal configuration yields 2-32 times signal enhancement for the ionic and atomic lines as compared to the single pulse LIBS spectra when an optimum temporal separation between the two pulses is used, while there is no significant signal enhancement for the molecular lines in the studied range of the delay. It is also noted that the dependence of the enhancement factor for ionic and atomic lines on the inter-pulse delay can be fitted by Gaussian function. Furthermore, the electron temperature obtained by the relative line-to-continuum intensity ratio method was used to explain the LIBS signal enhancement.

9.
Opt Express ; 20(8): 8837-47, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513594

RESUMO

A plasma grating is formed by two femtosecond filaments, and the influence of probe filament on the plasma grating is shown. By using the plasma grating, the enhancement of the third harmonic (TH) generated from the probe filament is studied, and more than three orders of magnitude enhancement of TH generation is demonstrated as compared with that obtained from a single filament. The dependences of TH generation on the time delay, the spatial period of plasma grating, the relative polarization and the crossing position between the probe beam and the two pump beams are investigated. The spectral broadening of TH generated from the probe filament induced by the interaction between the probe filament and the plasma grating is also studied.

10.
Appl Opt ; 51(12): 2045-50, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534914

RESUMO

A beam of 33 fs laser pulse with peak power of 15-40 GW was employed to explore a convenient method to determine the nonlinear refractive index coefficient of an optical glass. It is rare to investigate nonlinearities of optical glass with such an extreme ultrashort and powerful laser pulse. According to our method, only a single beam and a few experimental apparatuses are necessary to measure the nonlinear refractive index coefficient. The results from our method are in reasonable agreement with the others, which demonstrates that this new method works well, and the nonlinear refractive index coefficient is independent of measuring technology. Meanwhile, according to our results and those obtained by others in different laser power ranges, it seems that the nonlinear refractive index coefficient has a weak dependence on the laser peak power.

11.
Exp Ther Med ; 14(5): 4586-4594, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29104666

RESUMO

The present study determined the ability of the Lactobacillus rhamnosus GG strain (LGG) to enhance the anticancer effects of geniposide on HSC-3 human oral squamous carcinoma cells. LGG (1.0×103 CFU/ml) on its own had no impact on human oral keratinocytes and HSC-3 cancer cells. Geniposide (25 or 50 µg/ml) had no impact on human oral keratinocytes, but exerted growth inhibitory effects on HSC-3 cancer cells, which were increased in the presence of LGG. Flow cytometric analysis and a nuclear staining assay with DAPI revealed that HSC-3 cancer cells treated with LGG-geniposide (1.0×103 CFU/ml LGG and 50 µg/ml geniposide) had a higher apoptotic rate than cells in other treatment groups, particularly that treated with geniposide (50 µg/ml) only. Geniposide also increased the mRNA and protein expression of caspase-3, -8 and -9 as well as B-cell lymphoma 2 (Bcl-2)-associated X protein, p53, p21, inhibitor of nuclear factor-κB (NF-κB) α, Fas and Fas ligand, while decreasing Bcl-2, Bcl extra large protein, inhibitor of apoptosis-1 and -2, NF-κB, cyclooxigenase-2 and inducible nitric oxide synthase in HSC-3 cells, which was increased in the presence of LGG. These results indicated that LGG enhanced the anticancer effects of geniposide in HSC-3 cells.

12.
Sci Rep ; 7: 39993, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051167

RESUMO

The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA