Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1284, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346966

RESUMO

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.


Assuntos
Nanovacinas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Cricetinae , Humanos , Feminino , Enzima de Conversão de Angiotensina 2 , Vacinação , Imunização , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Biotechnol Prog ; : e3463, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568030

RESUMO

Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.

3.
Res Sq ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37461652

RESUMO

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.

4.
EBioMedicine ; 86: 104341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375316

RESUMO

BACKGROUND: The COVID-19 pandemic continues to cause morbidity and mortality worldwide. Most approved COVID-19 vaccines generate a neutralizing antibody response that primarily targets the highly variable receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. SARS-CoV-2 "variants of concern" have acquired mutations in this domain allowing them to evade vaccine-induced humoral immunity. Recent approaches to improve the breadth of protection beyond SARS-CoV-2 have required the use of mixtures of RBD antigens from different sarbecoviruses. It may therefore be beneficial to develop a vaccine in which the protective immune response targets a more conserved region of the S protein. METHODS: Here we have developed a vaccine based on the conserved S2 subunit of the S protein and optimized the adjuvant and immunization regimen in Syrian hamsters and BALB/c mice. We have characterized the efficacy of the vaccine against SARS-CoV-2 variants and other coronaviruses. FINDINGS: Immunization with S2-based constructs elicited a broadly cross-reactive IgG antibody response that recognized the spike proteins of not only SARS-CoV-2 variants, but also SARS-CoV-1, and the four endemic human coronaviruses. Importantly, immunization reduced virus titers in respiratory tissues in vaccinated animals challenged with SARS-CoV-2 variants B.1.351 (beta), B.1.617.2 (delta), and BA.1 (omicron) as well as a pangolin coronavirus. INTERPRETATION: These results suggest that S2-based constructs can elicit a broadly cross-reactive antibody response resulting in limited virus replication, thus providing a framework for designing vaccines that elicit broad protection against coronaviruses. FUNDING: NIH, Japan Agency for Medical Research and Development, Garry Betty/ V Foundation Chair Fund, and NSF.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas Combinadas , Vacinas contra COVID-19 , Pangolins , Pandemias , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Bioeng Transl Med ; 6(3): e10253, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589610

RESUMO

The persistence of the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought to the forefront the need for safe and effective vaccination strategies. In particular, the emergence of several variants with greater infectivity and resistance to current vaccines has motivated the development of a vaccine that elicits a broadly neutralizing immune response against all variants. In this study, we used a nanoparticle-based vaccine platform for the multivalent display of the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, the primary target of neutralizing antibodies. Multiple copies of RBD were conjugated to the SpyCatcher-mi3 protein nanoparticle to produce a highly immunogenic nanoparticle-based vaccine. RBD-SpyCatcher-mi3 vaccines elicited broadly cross-reactive antibodies that recognized the spike proteins of not just an early isolate of SARS-CoV-2, but also three SARS-CoV-2 variants of concern as well as SARS-CoV-1. Moreover, immunization elicited high neutralizing antibody titers against an early isolate of SARS-CoV-2 as well as four variants of concern, including the delta variant. These results reveal the potential of RBD-SpyCatcher-mi3 as a broadly protective vaccination strategy.

6.
Nanotechnology ; 21(41): 415302, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20834118

RESUMO

We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.


Assuntos
Imunoglobulina G/metabolismo , Nanoporos , Nanotecnologia/métodos , Dióxido de Silício/química , Adsorção , Animais , Fluoresceína-5-Isotiocianato , Imunoensaio , Microscopia de Força Atômica , Nanoporos/ultraestrutura , Nitrogênio/química , Tamanho da Partícula , Poloxâmero/química , Coelhos , Propriedades de Superfície , Difração de Raios X
7.
Nat Chem ; 11(5): 442-448, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011169

RESUMO

Recycled plastics are low-value commodities due to residual impurities and the degradation of polymer properties with each cycle of re-use. Plastics that undergo reversible polymerization allow high-value monomers to be recovered and re-manufactured into pristine materials, which should incentivize recycling in closed-loop life cycles. However, monomer recovery is often costly, incompatible with complex mixtures and energy-intensive. Here, we show that next-generation plastics-polymerized using dynamic covalent diketoenamine bonds-allow the recovery of monomers from common additives, even in mixed waste streams. Poly(diketoenamine)s 'click' together from a wide variety of triketones and aromatic or aliphatic amines, yielding only water as a by-product. Recovered monomers can be re-manufactured into the same polymer formulation, without loss of performance, as well as other polymer formulations with differentiated properties. The ease with which poly(diketoenamine)s can be manufactured, used, recycled and re-used-without losing value-points to new directions in designing sustainable polymers with minimal environmental impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA