Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 21(6): 5199-5224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36215130

RESUMO

Infrared (IR) spectroscopy is increasingly being used to analyze food crops for quality and safety purposes in a rapid, nondestructive, and eco-friendly manner. The lack of sensitivity and the overlapping absorption characteristics of major sample matrix components, however, often prevent the direct determination of food contaminants at trace levels. By measuring fungal-induced matrix changes with near IR and mid IR spectroscopy as well as hyperspectral imaging, the indirect determination of mycotoxins in food crops has been realized. Recent studies underline that such IR spectroscopic platforms have great potential for the rapid analysis of mycotoxins along the food and feed supply chain. However, there are no published reports on the validation of IR methods according to official regulations, and those publications that demonstrate their applicability in a routine analytical set-up are scarce. Therefore, the purpose of this review is to discuss the current state-of-the-art and the potential of IR spectroscopic methods for the rapid determination of mycotoxins in food crops. The study critically reflects on the applicability and limitations of IR spectroscopy in routine analysis and provides guidance to non-spectroscopists from the food and feed sector considering implementation of IR spectroscopy for rapid mycotoxin screening. Finally, an outlook on trends, possible fields of applications, and different ways of implementation in the food and feed safety area are discussed.


Assuntos
Micotoxinas , Micotoxinas/análise , Contaminação de Alimentos/análise , Produtos Agrícolas
2.
Adv Mater ; 36(15): e2309625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224595

RESUMO

The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.


Assuntos
Micotoxinas , Nanoestruturas , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Alimentos
3.
Food Chem ; 455: 139944, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850989

RESUMO

This study investigates the behaviour of gold nanoparticles (AuNPs) when exposed to chlorpyrifos, an agricultural pesticide, and its application in detecting the pesticide via surface-enhanced Raman spectroscopy (SERS). Under synergistic addition of NaCl, AuNPs undergo agglomeration at lower chlorpyrifos concentrations but aggregation at higher concentrations, resulting in a distinctive nonlinear SERS response. A linear relationship is obtained between 0.001 and 1 ppm with detection limit (LOD) of 0.009 ppm, while an inverse response is observed at higher concentrations (1-1000 ppm) with a LOD of 1 ppm. Combining the colorimetric response of AuNP solutions, their absorbance spectra, and principal component analysis can improve detection reliability. The assay, coupled with a simple recovery method using acetonitrile swabbing, achieves high reproducibility in detecting chlorpyrifos in cucumber, even at concentrations as low as 0.11 ppm. This approach can be tailored for various chlorpyrifos concentrations not only in cucumbers but also in different food matrices.


Assuntos
Clorpirifos , Cucumis sativus , Contaminação de Alimentos , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Clorpirifos/análise , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Contaminação de Alimentos/análise , Cucumis sativus/química , Limite de Detecção , Quimiometria , Inseticidas/análise , Inseticidas/química
4.
Food Chem ; 438: 138029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006696

RESUMO

Food fraud, along with many challenges to the integrity and sustainability, threatens the prosperity of businesses and society as a whole. Tea is the second most commonly consumed non-alcoholic beverage globally. Challenges to tea authenticity require the development of highly efficient and rapid solutions to improve supply chain transparency. This study has produced an innovative workflow for black tea geographical indications (GI) discrimination based on non-targeted spectroscopic fingerprinting techniques. A total of 360 samples originating from nine GI regions worldwide were analysed by Fourier Transform Infrared (FTIR) and Near Infrared spectroscopy. Machine learning algorithms (k-nearest neighbours and support vector machine models) applied to the test data greatly improved the GI identification achieving 100% accuracy using FTIR. This workflow will provide a low-cost and user-friendly solution for on-site and real-time determination of black tea geographical origin along supply chains.


Assuntos
Camellia sinensis , Chá , Chá/química , Fluxo de Trabalho , Camellia sinensis/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Aprendizado de Máquina , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
ACS Appl Nano Mater ; 6(12): 10431-10440, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37384129

RESUMO

Embedding Raman reporters within nanosized gaps of metallic nanoparticles is an attractive route for surface-enhanced Raman spectroscopy (SERS) applications, although often this involves complex synthesis procedures that limit their practical use. Herein, we present the tip-selective direct growth of silver satellites surrounding gold nanostars (AuNSt@AgSAT), mediated by a dithiol Raman reporter 1,4-benzenedithiol (BDT). We propose that BDT is embedded within nanogaps which form between the AuNSt tips and the satellites, and plays a key role in mediating the satellite growth. Not only proposing a rationale for the mechanistic growth of the AuNSt@AgSAT, we also demonstrate an example for its use for the detection of Hg2+ ions in water. The presence of Hg2+ resulted in amalgamation of the AuNSt@AgSAT, which altered both its structural morphology and Raman enhancement properties. This provides a basis for the detection where the Raman intensity of BDT is inversely proportional to the Hg2+ concentrations. As a result, Hg2+ could be detected at concentrations as low as 0.1 ppb. This paper not only provides important mechanistic insight into the tip-selective direct growth of the anisotropic nanostructure but also proposes its excellent Raman enhancement capability for bioimaging as well as biological and chemical sensing applications.

6.
Foods ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137302

RESUMO

There is a growing demand from consumers for more assurance in premium food products such as beef and especially steak. The quality of beef steak is primarily dictated by the maturation which ultimately influences its taste and flavor. These enhanced qualities have resulted in steak becoming a premium product that consumers are willing to pay a premium price for. A challenge, however, is analyzing the maturity of beef by traditional analytical techniques. Hyperspectral imaging (HSI) is a methodology that is gaining traction mainly due to miniaturization, improved optics, and software. In this study, HSI was applied to wet aged beef supplied at various stages of maturity, with spectral data generated using a portable hyperspectral camera. Two trials were conducted over a five-month period: (i) proof of principle and (ii) a bespoke sampling trial for the industry. With the support of industry participation, all samples were sourced from a highly reputable UK/Ireland supplier. To enhance data interpretation, the spectral data collected were combined with multivariate analysis. A range of chemometric models were generated using unsupervised and supervised methods to determine the maturity of the beef, and external validation was performed. The external validation showed good accuracy for "unknown samples" tested against the model set and ranged from 74 to 100% for the different stages of maturity (20, 30, and 40 days old). This study demonstrated that HSI can detect different maturity timepoints for beef samples, which could play an important role in solving some of the challenges that the industry faces with ensuring the authenticity of their products. This is the first time that portable HSI has been coupled with chemometric modeling for assessing the maturity of beef, and it can serve as a model for other food authenticity and quality applications.

7.
J AOAC Int ; 106(2): 356-369, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617186

RESUMO

BACKGROUND: Given the recent detection of tetrodotoxin (TTX) in bivalve molluscs but the absence of a full collaborative validation study for TTX determination in a large number of shellfish samples, interlaboratory assessment of method performance was required to better understand current capabilities for accurate and reproducible TTX quantitation using chemical and immunoassay methods. OBJECTIVE: The aim was to conduct an interlaboratory study with multiple laboratories, using results to assess method performance and acceptability of different TTX testing methods. METHODS: Homogenous and stable mussel and oyster materials were assessed by participants using a range of published and in-house detection methods to determine mean TTX concentrations. Data were used to calculate recoveries, repeatability, and reproducibility, together with participant acceptability z-scores. RESULTS: Method performance characteristics were good, showing excellent sensitivity, recovery, and repeatability. Acceptable reproducibility was evidenced by HorRat values for all LC-MS/MS and ELISA methods being less than the 2.0 limit of acceptability. Method differences between the LC-MS/MS participants did not result in statistically different results. Method performance characteristics compared well with previously published single-laboratory validated methods and no statistical difference was found in results returned by ELISA in comparison with LC-MS/MS. CONCLUSION: The results from this study demonstrate that current LC-MS/MS methods and ELISA are on the whole capable of sensitive, accurate, and reproducible TTX quantitation in shellfish. Further work is recommended to expand the number of laboratories testing ELISA and to standardize an LC-MS/MS protocol to further improve interlaboratory precision. HIGHLIGHTS: Multiple mass spectrometric methods and a commercial ELISA have been successfully assessed through an interlaboratory study, demonstrating excellent performance.


Assuntos
Bivalves , Ostreidae , Humanos , Animais , Tetrodotoxina/análise , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Bivalves/química , Ostreidae/química , Ensaio de Imunoadsorção Enzimática/métodos
8.
NPJ Sci Food ; 6(1): 3, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027565

RESUMO

Pesticides are a safety issue globally and cause serious concerns for the environment, wildlife and human health. The handheld detection of four pesticide residues widely used in Basmati rice production using surface-enhanced Raman spectroscopy (SERS) is reported. Different SERS substrates were synthesised and their plasmonic and Raman scattering properties evaluated. Using this approach, detection limits for pesticide residues were achieved within the range of 5 ppb-75 ppb, in solvent. Various extraction techniques were assessed to recover pesticide residues from spiked Basmati rice. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERs) acetate extraction was applied and characteristic spectral data for each pesticide was obtained from the spiked matrix and analysed using handheld-SERS. This approach allowed detection limits within the matrix conditions to be markedly improved, due to the rapid aggregation of nanogold caused by the extraction medium. Thus, detection limits for three out of four pesticides were detectable below the Maximum Residue Limits (MRLs) of 10 ppb in Basmati rice. Furthermore, the multiplexing performance of handheld-SERS was assessed in solvent and matrix conditions. This study highlights the great potential of handheld-SERS for the rapid on-site detection of pesticide residues in rice and other commodities.

9.
Nanomicro Lett ; 13(1): 193, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515917

RESUMO

Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal-organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA