Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18104-18116, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899355

RESUMO

The submarine-confined bubble swarm is considered an important constraining environment for the early evolution of living matter due to the abundant gas/water interfaces it provides. Similarly, the spatiotemporal characteristics of the confinement effect in this particular scenario may also impact the origin, transfer, and amplification of chirality in organisms. Here, we explore the confinement effect on the chiral hierarchical assembly of the amphiphiles in the confined bubble array stabilized by the micropillar templates. Compared with the other confinement conditions, the assembly in the bubble scenario yields a fractal morphology and exhibits a unique level of the chiral degree, ordering, and orientation consistency, which can be attributed to the characteristic interfacial effects of the rapidly formed gas/water interfaces. Thus, molecules with a balanced amphiphilicity can be more favorable for the promotion. Not limited to the pure enantiomers, chiral amplification of the enantiomer-mixed assembly is observed only in the bubble scenario. Beyond the interfacial mechanism, the fast formation kinetics of the confined liquid bridges in the bubble scenario endows the assembly with the tunable hierarchical morphology when regulating the amphiphilicity, aggregates, and confined spaces. Furthermore, the chiral-induced spin selectivity (CISS) effect of the fractal hierarchical assembly was systematically investigated, and a strategy based on photoisomerization was developed to efficiently modulate the CISS effect. This work provides insights into the robustness of confined bubble swarms in promoting a chiral hierarchical assembly and the potential applications of the resulting chiral hierarchical patterns in solid-state spintronic and optical devices.

2.
Small ; 19(35): e2301362, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37170715

RESUMO

Precise control of molecular assembly is of great significance in the application of functional molecules. This work has systematically investigated the humidity effect in bubble-assisted molecular assembly. This work finds humidity is critical in the evolution of the soft confined space, leading to the formation of microscale liquid confined space under high humidity, and nanoscale liquid confined space under low humidity. It is also revealed that the differences in surface wettability and adhesion play the key role. Consequently, a flat pattern with thermodynamically favorable ordered structure and a sharp pattern with dynamically favorable disordered structure are achieved, which show different solid-state photoisomerization behaviors and photoresponsiveness. Interestingly, conductivity of sharp pattern with disordered structure is higher than that of flat pattern with layered ordered structure due to electronic transport mechanism of different spatial dimensions. This work opens a new way for manipulating the molecular self-assembly to control the morphology and function of molecular patterns.

3.
RSC Adv ; 14(1): 353-363, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173589

RESUMO

The elucidation of carbonate crystal growth mechanisms contributes to a deeper comprehension of microbial-induced carbonate precipitation processes. In this research, the Curvibacter lanceolatus HJ-1 strain, well-known for its proficiency in inducing carbonate mineralization, was employed to trigger the formation of concave-type carbonate minerals. The study meticulously tracked the temporal alterations in the culture solution and conducted comprehensive analyses of the precipitated minerals' mineralogy and morphology using advanced techniques such as X-ray diffraction, scanning electron microscopy, focused ion beam, and transmission electron microscopy. The findings unequivocally demonstrate that concave-type carbonate minerals are meticulously templated by bacterial biofilms and employ calcified bacteria as their fundamental structural components. The precise morphological evolution pathway can be delineated as follows: initiation with the formation of bacterial biofilms, followed by the aggregation of calcified bacterial clusters, ultimately leading to the emergence of concave-type minerals characterized by disc-shaped, sunflower-shaped, and spherical morphologies.

4.
Adv Sci (Weinh) ; 11(24): e2309781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38610112

RESUMO

Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.

5.
Adv Mater ; 34(17): e2200928, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35315543

RESUMO

Organic semiconductor single-crystal (OSSC) patterns with precisely controlled orientation are of great significance to the integrated fabrication of devices with high and uniform performance. However, it is still challenging to achieve purely oriented OSSC patterns due to the complex nucleation and growth process of OSSCs. Here, a general direct writing approach is presented to readily obtain high-quality OSSC patterns with unique orientation. In specific, a direct writing method is demonstrated wherein the microscale meniscus is manipulated, which makes it possible to precisely control the nucleation and growth process of the OSSC because of its comparable size to the crystal nuclei. The resulting OSSC patterns are highly crystalline and purely oriented, in which each ribbon crystal shows a deviation angle of 33° to the printing direction. The mechanism of orientation purification is revealed experimentally and theoretically, and the results show that the TCL deformation caused by the difference in wettability and adhesive force, as well as the asymmetry of fluid concentration distribution, are the key factors leading to the selective deposition and unique orientation. Moreover, organic field-effect transistors (OFETs) and polarization-sensitive photodetectors are prepared based on the OSSC patterns with unique orientation, which exhibit higher device performance compared to the non-purely oriented crystal-based OFETs.

6.
Adv Mater ; 34(43): e2206486, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36047665

RESUMO

The intentionally designed band alignment of heterostructures and doping engineering are keys to implement device structure design and device performance optimization. According to the theoretical prediction of several typical materials among the transition metal dichalcogenides (TMDs) and group-IV metal chalcogenides, MoS2 and SnSe2 present the largest staggered band offset. The large band offset is conducive to the separation of photogenerated carriers, thus MoS2 /SnSe2 is a theoretically ideal candidate for fabricating photodetector, which is also verified in the experiment. Furthermore, in order to extend the photoresponse spectrum to solar-blind ultraviolet (SBUV), doping engineering is adopted to form an additional electron state, which provides an extra carrier transition channel. In this work, pure MoS2 /SnSe2 and doped MoS2 /SnSe2 heterostructures are both fabricated. In terms of the photoelectric performance evaluation, the rejection ratio R254 /R532 of the photodetector based on doped MoS2 /SnSe2 is five orders of magnitude higher than that of pure MoS2 /SnSe2 , while the response time is obviously optimized by 3 orders. The results demonstrate that the combination of band alignment and doping engineering provides a new pathway for constructing SBUV photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA