Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 117(1): 17, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357563

RESUMO

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.


Assuntos
Núcleo Celular , Miocárdio , Animais , Expressão Gênica , Mamíferos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
2.
FASEB J ; 33(12): 13131-13144, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638431

RESUMO

Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Remodelação Ventricular/fisiologia , Animais , Calpaína/genética , Ecocardiografia , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Proteína Quinase 12 Ativada por Mitógeno/genética , Fosforilação , Isoformas de Proteínas , Espectrometria de Massas em Tandem , Remodelação Ventricular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Mol Cell Cardiol ; 130: 184-196, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30986378

RESUMO

Maladaptive hypertrophy of cardiac myocytes increases the risk of heart failure. The underlying signaling can be triggered and interrogated in cultured neonatal ventricular myocytes (NRVMs) using sophisticated pharmacological and genetic techniques. However, the methods for quantifying cell growth are, by comparison, inadequate. The lack of quantitative, calibratable and computationally-inexpensive high-throughput technology has limited the scope for using cultured myocytes in large-scale analyses. We present a ratiometric method for quantifying the hypertrophic growth of cultured myocytes, compatible with high-throughput imaging platforms. Protein biomass was assayed from sulforhodamine B (SRB) fluorescence, and image analysis calculated the quotient of signal from extra-nuclear and nuclear regions. The former readout relates to hypertrophic growth, whereas the latter is a reference for correcting protein-independent (e.g. equipment-related) variables. This ratiometric measure, when normalized to the number of cells, provides a robust quantification of cellular hypertrophy. The method was tested by comparing the efficacy of various chemical agonists to evoke hypertrophy, and verified using independent assays (myocyte area, transcripts of markers). The method's high resolving power and wide dynamic range were confirmed by the ability to generate concentration-response curves, track the time-course of hypertrophic responses with fine temporal resolution, describe drug/agonist interactions, and screen for novel anti-hypertrophic agents. The method can be implemented as an end-point in protocols investigating hypertrophy, and is compatible with automated plate-reader platforms for generating high-throughput data, thereby reducing investigator-bias. Finally, the computationally-minimal workflow required for obtaining measurements makes the method simple to implement in most laboratories.


Assuntos
Cardiomegalia , Processamento de Imagem Assistida por Computador , Miócitos Cardíacos , Rodaminas/química , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
4.
Cardiovasc Res ; 118(14): 2946-2959, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897412

RESUMO

AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS: Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.


Assuntos
Bicarbonatos , Miócitos Cardíacos , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Concentração de Íons de Hidrogênio , Bicarbonatos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Miocárdio/metabolismo , Sódio/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo
5.
Cardiovasc Res ; 116(12): 1958-1971, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742355

RESUMO

AIMS: When activated, Na+/H+ exchanger-1 (NHE1) produces some of the largest ionic fluxes in the heart. NHE1-dependent H+ extrusion and Na+ entry strongly modulate cardiac physiology through the direct effects of pH on proteins and by influencing intracellular Ca2+ handling. To attain an appropriate level of activation, cardiac NHE1 must respond to myocyte-derived cues. Among physiologically important cues is nitric oxide (NO), which regulates a myriad of cardiac functions, but its actions on NHE1 are unclear. METHODS AND RESULTS: NHE1 activity was measured using pH-sensitive cSNARF1 fluorescence after acid-loading adult ventricular myocytes by an ammonium prepulse solution manoeuvre. NO signalling was manipulated by knockout of its major constitutive synthase nNOS, adenoviral nNOS gene delivery, nNOS inhibition, and application of NO-donors. NHE1 flux was found to be activated by low [NO], but inhibited at high [NO]. These responses involved cGMP-dependent signalling, rather than S-nitros(yl)ation. Stronger cGMP signals, that can inhibit phosphodiesterase enzymes, allowed [cAMP] to rise, as demonstrated by a FRET-based sensor. Inferring from the actions of membrane-permeant analogues, cGMP was determined to activate NHE1, whereas cAMP was inhibitory, which explains the biphasic regulation by NO. Activation of NHE1-dependent Na+ influx by low [NO] also increased the frequency of spontaneous Ca2+ waves, whereas high [NO] suppressed these aberrant forms of Ca2+ signalling. CONCLUSIONS: Physiological levels of NO stimulation increase NHE1 activity, which boosts pH control during acid-disturbances and results in Na+-driven cellular Ca2+ loading. These responses are positively inotropic but also increase the likelihood of aberrant Ca2+ signals, and hence arrhythmia. Stronger NO signals inhibit NHE1, leading to a reversal of the aforementioned effects, ostensibly as a potential cardioprotective intervention to curtail NHE1 overdrive.


Assuntos
Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Preparação de Coração Isolado , Masculino , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro
6.
JCI Insight ; 4(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779710

RESUMO

Iron deficiency is present in ~50% of heart failure (HF) patients. Large multicenter trials have shown that treatment of iron deficiency with i.v. iron benefits HF patients, but the underlying mechanisms are not known. To investigate the actions of iron deficiency on the heart, mice were fed an iron-depleted diet, and some received i.v. ferric carboxymaltose (FCM), an iron supplementation used clinically. Iron-deficient animals became anemic and had reduced ventricular ejection fraction measured by magnetic resonance imaging. Ca2+ signaling, a pathway linked to the contractile deficit in failing hearts, was also significantly affected. Ventricular myocytes isolated from iron-deficient animals produced smaller Ca2+ transients from an elevated diastolic baseline but had unchanged sarcoplasmic reticulum (SR) Ca2+ load, trigger L-type Ca2+ current, or cytoplasmic Ca2+ buffering. Reduced fractional release from the SR was due to downregulated RyR2 channels, detected at protein and message levels. The constancy of diastolic SR Ca2+ load is explained by reduced RyR2 permeability in combination with right-shifted SERCA activity due to dephosphorylation of its regulator phospholamban. Supplementing iron levels with FCM restored normal Ca2+ signaling and ejection fraction. Thus, 2 Ca2+-handling proteins previously implicated in HF become functionally impaired in iron-deficiency anemia, but their activity is rescued by i.v. iron supplementation.


Assuntos
Anemia Ferropriva/patologia , Insuficiência Cardíaca/etiologia , Contração Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Administração Intravenosa , Anemia Ferropriva/sangue , Anemia Ferropriva/complicações , Anemia Ferropriva/tratamento farmacológico , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Compostos Férricos/administração & dosagem , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/prevenção & controle , Humanos , Ferro/sangue , Imageamento por Ressonância Magnética , Masculino , Maltose/administração & dosagem , Maltose/análogos & derivados , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos , Cultura Primária de Células , Retículo Sarcoplasmático/patologia , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA