RESUMO
The ß-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for ß-lactams and ß-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All ß-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating ß-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future ß-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.
Assuntos
Antibacterianos , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacologia em Rede , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Imipenem/farmacologia , Imipenem/metabolismo , Ceftazidima/metabolismo , beta-Lactamases/metabolismoRESUMO
Human rhinovirus (HRV), one of the most frequent human pathogens, is the major causative agent of common colds. HRVs also cause or exacerbate severe respiratory diseases, such as asthma or chronic obstructive pulmonary disease. Despite the biomedical and socioeconomic importance of this virus, no anti-HRV vaccines or drugs are available yet. Protein-protein interfaces in virus capsids have increasingly been recognized as promising virus-specific targets for the development of antiviral drugs. However, the specific structural elements and residues responsible for the biological functions of these extended capsid regions are largely unknown. In this study, we performed a thorough mutational analysis to determine which particular residues along the capsid interpentamer interfaces are relevant to HRV infection as well as the stage(s) in the viral cycle in which they are involved. The effect on the virion infectivity of the individual mutation to alanine of 32 interfacial residues that, together, removed most of the interpentamer interactions was analyzed. Then, a representative sample that included many of those 32 single mutants were tested for capsid and virion assembly as well as virion conformational stability. The results indicate that most of the interfacial residues, and the interactions they establish, are biologically relevant, largely because of their important roles in virion assembly and/or stability. The HRV interpentamer interface is revealed as an atypical protein-protein interface, in which infectivity-determining residues are distributed at a high density along the entire interface. Implications for a better understanding of the relationship between the molecular structure and function of HRV and the development of novel capsid interface-binding anti-HRV agents are discussed. IMPORTANCE The rising concern about the serious medical and socioeconomic consequences of respiratory infections by HRV has elicited a renewed interest in the development of anti-HRV drugs. The conversion into effective drugs of compounds identified via screening, as well as antiviral drug design, rely on the acquisition of fundamental knowledge about the targeted viral elements and their roles during specific steps of the infectious cycle. The results of this study provide a detailed view on structure-function relationships in a viral capsid protein-protein interface, a promising specific target for antiviral intervention. The high density and scattering of the interfacial residues found to be involved in HRV assembly and/or stability support the possibility that any compound designed to bind any particular site at the interface will inhibit infection by interfering with virion morphogenesis or stabilization of the functional virion conformation.
Assuntos
Proteínas do Capsídeo , Rhinovirus , Montagem de Vírus , Antivirais/farmacologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Conformação Molecular , Rhinovirus/fisiologia , Vírion/metabolismoRESUMO
OBJECTIVES: To analyse the dynamics and mechanisms of stepwise resistance development to ceftolozane/tazobactam and imipenem/relebactam in XDR Pseudomonas aeruginosa clinical strains. METHODS: XDR clinical isolates belonging to ST111 (main resistance mechanisms: oprD-, dacB-, CARB-2), ST175 (oprD-, ampR-G154R) and ST235 (oprD-, OXA-2) high-risk clones were incubated for 24 h in Müeller-Hinton Broth with 0.125-64 mg/L of ceftolozane + tazobactam 4 mg/L or imipenem + relebactam 4 mg/L. Tubes from the highest antibiotic concentration showing growth were reinoculated into fresh medium containing concentrations up to 64 mg/L for 7 consecutive days. Two colonies per strain from each of the triplicate experiments were characterized by determining the susceptibility profiles, whole genome sequencing (WGS), and in vitro fitness through competitive growth assays. RESULTS: Resistance development occurred more slowly and reached a lower level for imipenem/relebactam than for ceftolozane/tazobactam in all tested XDR strains. Moreover, resistance development to imipenem/relebactam remained low even for ST175 isolates that had developed ceftolozane/tazobactam resistance during therapy. Lineages evolved in the presence of ceftolozane/tazobactam showed high-level resistance, imipenem/relebactam hypersusceptibility and low fitness cost, whereas lineages evolved in the presence of imipenem/relebactam showed moderate (borderline) resistance, no cross-resistance to ceftolozane/tazobactam and high fitness cost. WGS evidenced that ceftolozane/tazobactam resistance was mainly caused by mutations in the catalytic centres of intrinsic (AmpC) or acquired (OXA) ß-lactamases, whereas lineages evolved in imipenem/relebactam frequently showed structural mutations in MexB or in ParS, along with some strain-specific mutations. CONCLUSIONS: Imipenem/relebactam could be a useful alternative for the treatment of XDR P. aeruginosa infections, potentially reducing resistance development during therapy.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Tazobactam/uso terapêuticoRESUMO
Avibactam belongs to the new class of diazabicyclooctane ß-lactamase inhibitors. Its inhibitory spectrum includes class A, C and D enzymes, including P. aeruginosa AmpC. Nonetheless, recent reports have revealed strain-dependent avibactam AmpC induction. In the present work, we wanted to assess the mechanistic basis underlying AmpC induction and determine if derepressed PDC-X mutated enzymes from ceftazidime/avibactam-resistant clinical isolates were further inducible. We determined avibactam concentrations that half-maximally inhibited (IC50) bocillin FL binding. Inducer ß-lactams were also studied as comparators. Live cells' time-course penicillin-binding proteins (PBPs) occupancy of avibactam was studied. To assess the ampC induction capacity of avibactam and comparators, qRT-PCR was performed in wild-type PAO1, PBP4, triple PBP4, 5/6 and 7 knockout derivatives and two ceftazidime/avibactam-susceptible/resistant XDR clinical isolates belonging to the epidemic high-risk clone ST175. PBP4 inhibition was observed for avibactam and ß-lactam comparators. Induction capacity was consistently correlated with PBP4 binding affinity. Outer membrane permeability-limited PBP4 binding was observed in the live cells' assay. As expected, imipenem and cefoxitin showed strong induction in PAO1, especially for carbapenem; avibactam induction was conversely weaker. Overall, the inducer effect was less remarkable in ampC-derepressed mutants and nonetheless absent upon avibactam exposure in the clinical isolates harboring mutated AmpC variants and their parental strains.
Assuntos
Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Mutação/genética , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Cefoxitina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Imipenem/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacosRESUMO
Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.
Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Substituição de Aminoácidos/genética , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Análise Mutacional de DNA , Febre Aftosa/virologia , Vírus da Febre Aftosa/patogenicidade , Genoma Viral/genética , Temperatura Alta , Modelos Moleculares , Temperatura , Vírion/metabolismoRESUMO
In chronic kidney disease patients, high phosphate (HP) levels are associated with cardiovascular disease, the major cause of morbidity and mortality. Since serum phosphate has been independently correlated with inflammation, the present study aimed to investigate an independent direct effect of HP as a pro-inflammatory factor in VSMCs. A possible modulatory effect of vitamin D (VitD) was also investigated. The study was performed in an in vitro model of human aortic smooth muscle cells (HASMCs). Incubation of cells in an HP (3.3 mM) medium caused an increased expression of the pro-inflammatory mediators intercellular adhesion molecule 1 (ICAM-1), interleukins (ILs) IL-1ß, IL-6, IL-8 and tumour necrosis factor α (TNF-α) (not corroborated at the protein levels for ICAM-1), as well as an increase in reactive oxygen/nitrogen species (ROS/RNS) production. This was accompanied by the activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling as demonstrated by the increase in the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κΒ) assessed by Western blotting and confocal microscopy. Since all these events were attenuated by an antioxidant pre-incubation with the radical scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), it is suggested that the inflammatory response is upstream mediated by the ROS/RNS-induced activation of NF-κΒ. Addition of paricalcitol (PC) 3·10-8 M to cells in HP prevented the phosphate induced ROS/RNS increase, the activation of NF-κΒ and the cytokine up-regulation. A bimodal effect was observed, however, for different calcitriol (CTR) concentrations, 10-10 and 10-12 M attenuated but 10-8 M stimulated this phosphate induced pro-oxidative and pro-inflammatory response. Therefore, these findings provide novel mechanisms whereby HP may directly favour vascular dysfunctions and new insights into the protective effects exerted by VitD derivatives.
Assuntos
Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatos/farmacologia , Aorta/citologia , Aorta/metabolismo , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Núcleo Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ergocalciferóis/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Nitrogênio/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismoRESUMO
The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or ß-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different ß-lactams and 4 ß-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent ß-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log10 CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized ß-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development.
Assuntos
Pseudomonas aeruginosa , beta-Lactamas , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Aztreonam/farmacologia , Preparações Farmacêuticas/metabolismo , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefalosporinas/farmacologia , Penicilinas , Imipenem/metabolismo , Imipenem/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Andinocilina/metabolismo , Andinocilina/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. ß-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant ß-lactams and 4 ß-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by ß-lactam-based ß-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.
Assuntos
Gonorreia , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Penicilinas , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Elucidation of the molecular basis of the stability of foot-and-mouth disease virus (FMDV) particles is relevant to understand key aspects of the virus cycle. Residue N17D in VP1, located at the capsid inner surface, modulates the resistance of FMDV virion to dissociation and inactivation at acidic pH. Here we have studied whether the virion-stabilizing effect of amino acid substitution VP1 N17D may be mediated by the alteration of electrostatic charge at this position and/or the presence of the viral RNA. Substitutions that either introduced a positive charge (R,K) or preserved neutrality (A) at position VP1 17 led to increased sensitivity of virions to inactivation at acidic pH, while replacement by negatively charged residues (D,E) increased the resistance of virions to acidic pH. The role in virion stability of viral RNA was addressed using FMDV empty capsids that have a virtually unchanged structure compared to the capsid in the RNA-filled virion, but that are considerably more resistant to acidic pH than WT virions, supporting a virion-destabilizing effect of the RNA. Remarkably, no differences were observed in the resistance to dissociation at acidic pH between the WT empty capsids and those harboring replacement N17D. Thus, the virion-destabilizing effect of viral RNA at acidic pH can be partially restored by introducing negatively charged residues at position VP1 N17.
Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Febre Aftosa/química , RNA Viral/química , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Febre Aftosa/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Estabilidade de RNA , Eletricidade Estática , Vírion/química , Vírion/genéticaRESUMO
Picornaviridae family includes several viruses of great economic and medical importance. Among all members of the family we focused our attention on the human rhinovirus, the most important etiologic agent of the common cold and on the foot-and-mouth disease virus that cause of an economically important disease in cattle. Despite the low sequence similarity of the polyprotein coding open reading frames of these highly divergent picornaviruses, they have in common structural and functional similarities including a similar genomic organization, a capsid structure composed of 60 copies of four different proteins, or 3D-structures showing similar general topology, among others. We hypothesized that such similarities could be reflected in emergent common compositional structures interspersed in their genomes which were not observed heretofore. Using a methodology categorizing nucleotide triplets by their gross-composition we have found two human rhinoviruses sharing compositional structures interspersed along their genomic RNA with three foot-and-mouth disease viruses. The shared compositional structures are in one case composed by nucleotide triplets containing all nearest-neighbours of A and G and in other case containing all nearest-neighbours of A, and C. The structures are under strong evolutionary constraints for variability, allowing the access to novel viral genomic motifs with likely biological relevance. The conserved fragments would be useful to predict critical mutation points sites important from the evolutionary point of view.
Assuntos
Sequência Conservada , Evolução Molecular , Vírus da Febre Aftosa/genética , Genoma Viral , Rhinovirus/genética , Códon/genética , Humanos , Fases de Leitura Aberta , Sorogrupo , Proteínas Virais/genéticaRESUMO
Virus stability and dynamics play critical roles during infection. Some viruses, including foot-and-mouth disease virus (FMDV), are surprisingly prone to thermal dissociation outside the cell. The structural bases and functional implications of this distinctive trait were essentially unknown. This study (1) uncovers the structural determinants of FMDV thermolability, (2) investigates the relationship between virus thermolability and infectivity, and (3) provides a structure-based rationale for engineering thermostable virus particles to develop improved vaccines and nanocontainers. The results reveal that negatively charged residues close to protein-protein interfaces exert electrostatic repulsions between capsid subunits and mediate the sensitivity of the virion to thermal dissociation, even at neutral pH. Based on these results, a series of fully infectious virions of increased thermostability were engineered by individually removing different carboxylates involved in intersubunit repulsions. The implications for virus biology and the design of thermostable vaccines are discussed.