Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Circ Res ; 123(4): 495-505, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30355250

RESUMO

Although clinical trials of cell-based approaches to cardiovascular disease have yielded some promising results, no cell-based therapy has achieved regulatory approval for a cardiovascular indication. To broadly assess the challenges to regulatory approval and identify strategies to facilitate this goal, the Cardiac Safety Research Consortium sponsored a session during the Texas Heart Institute International Symposium on Cardiovascular Regenerative Medicine in September 2017. This session convened leaders in cardiovascular regenerative medicine, including participants from academia, the pharmaceutical industry, the US Food and Drug Administration, and the Cardiac Safety Research Consortium, with particular focus on treatments closest to regulatory approval. A goal of the session was to identify barriers to regulatory approval and potential pathways to overcome them. Barriers identified include manufacturing and therapeutic complexity, difficulties identifying an optimal comparator group, limited industry capacity for funding pivotal clinical trials, and challenges to demonstrating efficacy on clinical end points required for regulatory decisions. Strategies to overcome these barriers include precompetitive development of a cell therapy registry network to enable dual-purposing of clinical data as part of pragmatic clinical trial design, development of standardized terminology for product activity and end points to facilitate this registry, use of innovative statistical methods and quality of life or functional end points to supplement outcomes such as death or heart failure hospitalization and reduce sample size, involvement of patients in determining the research agenda, and use of the Food and Drug Administration's new Regenerative Medicine Advanced Therapy designation to facilitate early discussion with regulatory authorities when planning development pathways.


Assuntos
Cardiologia/métodos , Congressos como Assunto , Cardiopatias/terapia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Animais , Humanos
2.
Circ Res ; 122(5): 701-711, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358228

RESUMO

RATIONALE: The majority of current cardiovascular cell therapy trials use bone marrow progenitor cells (BM PCs) and achieve only modest efficacy; the limited potential of these cells to differentiate into endothelial-lineage cells is one of the major barriers to the success of this promising therapy. We have previously reported that the E2F transcription factor 1 (E2F1) is a repressor of revascularization after ischemic injury. OBJECTIVE: We sought to define the role of E2F1 in the regulation of BM PC function. METHODS AND RESULTS: Ablation of E2F1 (E2F1 deficient) in mouse BM PCs increases oxidative metabolism and reduces lactate production, resulting in enhanced endothelial differentiation. The metabolic switch in E2F1-deficient BM PCs is mediated by a reduction in the expression of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase kinase 2; overexpression of pyruvate dehydrogenase kinase 4 reverses the enhancement of oxidative metabolism and endothelial differentiation. Deletion of E2F1 in the BM increases the amount of PC-derived endothelial cells in the ischemic myocardium, enhances vascular growth, reduces infarct size, and improves cardiac function after myocardial infarction. CONCLUSION: Our results suggest a novel mechanism by which E2F1 mediates the metabolic control of BM PC differentiation, and strategies that inhibit E2F1 or enhance oxidative metabolism in BM PCs may improve the effectiveness of cell therapy.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Fator de Transcrição E2F1/metabolismo , Células Endoteliais/citologia , Infarto do Miocárdio/terapia , Estresse Oxidativo , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Células Cultivadas , Fator de Transcrição E2F1/genética , Células Endoteliais/metabolismo , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
3.
Circ Res ; 120(9): 1466-1476, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298297

RESUMO

RATIONALE: Paracrine secretions seem to mediate therapeutic effects of human CD34+ stem cells locally transplanted in patients with myocardial and critical limb ischemia and in animal models. Earlier, we had discovered that paracrine secretion from human CD34+ cells contains proangiogenic, membrane-bound nanovesicles called exosomes (CD34Exo). OBJECTIVE: Here, we investigated the mechanisms of CD34Exo-mediated ischemic tissue repair and therapeutic angiogenesis by studying their miRNA content and uptake. METHODS AND RESULTS: When injected into mouse ischemic hindlimb tissue, CD34Exo, but not the CD34Exo-depleted conditioned media, mimicked the beneficial activity of their parent cells by improving ischemic limb perfusion, capillary density, motor function, and their amputation. CD34Exo were found to be enriched with proangiogenic miRNAs such as miR-126-3p. Knocking down miR-126-3p from CD34Exo abolished their angiogenic activity and beneficial function both in vitro and in vivo. Interestingly, injection of CD34Exo increased miR-126-3p levels in mouse ischemic limb but did not affect the endogenous synthesis of miR-126-3p, suggesting a direct transfer of stable and functional exosomal miR-126-3p. miR-126-3p enhanced angiogenesis by suppressing the expression of its known target, SPRED1, simultaneously modulating the expression of genes involved in angiogenic pathways such as VEGF (vascular endothelial growth factor), ANG1 (angiopoietin 1), ANG2 (angiopoietin 2), MMP9 (matrix metallopeptidase 9), TSP1 (thrombospondin 1), etc. Interestingly, CD34Exo, when treated to ischemic hindlimbs, were most efficiently internalized by endothelial cells relative to smooth muscle cells and fibroblasts, demonstrating a direct role of stem cell-derived exosomes on mouse endothelium at the cellular level. CONCLUSIONS: Collectively, our results have demonstrated a novel mechanism by which cell-free CD34Exo mediates ischemic tissue repair via beneficial angiogenesis. Exosome-shuttled proangiogenic miRNAs may signify amplification of stem cell function and may explain the angiogenic and therapeutic benefits associated with CD34+ stem cell therapy.


Assuntos
Proteínas Angiogênicas/metabolismo , Antígenos CD34/metabolismo , Células Progenitoras Endoteliais/transplante , Exossomos/transplante , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Angiogênicas/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Regulação da Expressão Gênica , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Atividade Motora , Comunicação Parácrina , Fenótipo , Interferência de RNA , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Transfecção
4.
Circ Res ; 120(2): 324-331, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27821724

RESUMO

RATIONALE: Despite direct immediate intervention and therapy, ST-segment-elevation myocardial infarction (STEMI) victims remain at risk for infarct expansion, heart failure, reinfarction, repeat revascularization, and death. OBJECTIVE: To evaluate the safety and bioactivity of autologous CD34+ cell (CLBS10) intracoronary infusion in patients with left ventricular dysfunction post STEMI. METHODS AND RESULTS: Patients who underwent successful stenting for STEMI and had left ventricular dysfunction (ejection fraction≤48%) ≥4 days poststent were eligible for enrollment. Subjects (N=161) underwent mini bone marrow harvest and were randomized 1:1 to receive (1) autologous CD34+ cells (minimum 10 mol/L±20% cells; N=78) or (2) diluent alone (N=83), via intracoronary infusion. The primary safety end point was adverse events, serious adverse events, and major adverse cardiac event. The primary efficacy end point was change in resting myocardial perfusion over 6 months. No differences in myocardial perfusion or adverse events were observed between the control and treatment groups, although increased perfusion was observed within each group from baseline to 6 months (P<0.001). In secondary analyses, when adjusted for time of ischemia, a consistently favorable cell dose-dependent effect was observed in the change in left ventricular ejection fraction and infarct size, and the duration of time subjects was alive and out of hospital (P=0.05). At 1 year, 3.6% (N=3) and 0% deaths were observed in the control and treatment group, respectively. CONCLUSIONS: This PreSERVE-AMI (Phase 2, randomized, double-blind, placebo-controlled trial) represents the largest study of cell-based therapy for STEMI completed in the United States and provides evidence supporting safety and potential efficacy in patients with left ventricular dysfunction post STEMI who are at risk for death and major morbidity. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01495364.


Assuntos
Antígenos CD34/administração & dosagem , Transplante de Medula Óssea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/terapia , Idoso , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Infusões Intra-Arteriais/métodos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Transplante Autólogo/métodos , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia
5.
Circ J ; 83(7): 1422-1430, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31178469

RESUMO

In 1997, the seminal manuscript by Asahara, Murohara, Isner et al outlined the evidence for the existence of circulating, bone marrow-derived cells capable of stimulating and contributing to the formation of new blood vessels. Consistent with the paradigm shift that this work represented, it triggered much scientific debate and controversy, some of which persists 2 decades later. In contrast, the clinical application of autologous CD34 cell therapy has been marked by a track record of consistent safety and clinical benefit in multiple ischemic conditions. In this review, we summarize the preclinical and clinical evidence from over 700 patients in clinical trials of CD34 cell therapy.


Assuntos
Antígenos CD34/imunologia , Transtornos Cerebrovasculares/cirurgia , Células Progenitoras Endoteliais/transplante , Extremidade Inferior/irrigação sanguínea , Isquemia Miocárdica/cirurgia , Neovascularização Fisiológica , Doença Arterial Periférica/cirurgia , Regeneração , Transplante de Células-Tronco , Animais , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/imunologia , Transtornos Cerebrovasculares/fisiopatologia , Células Progenitoras Endoteliais/imunologia , Humanos , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/fisiopatologia , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/imunologia , Doença Arterial Periférica/fisiopatologia , Recuperação de Função Fisiológica , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
6.
Eur Heart J ; 39(23): 2208-2216, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29315376

RESUMO

Aims: Autologous CD34+ (auto-CD34+) cells represent an attractive option for the treatment of refractory angina. Three double-blinded randomized trials (n = 304) compared intramyocardial (IM) auto-CD34+ cells with IM placebo injections to affect total exercise time (TET), angina frequency (AF), and major adverse cardiac events (MACE). Patient-level data were pooled from the Phase I, Phase II ACT-34, ACT-34 extension, and Phase III RENEW trials to determine the efficacy and safety of auto-CD34+ cells. Methods and results: Treatment effects for TET were analysed using an analysis of covariance mixed-effects model and for AF using Poisson regression in a log linear model with repeated measures. The Kaplan-Meier rate estimates for MACE were compared using the log-rank test. Autologous CD34+ cell therapy improved TET by 46.6 s [3 months, 95% confidence interval (CI) 13.0 s-80.3 s; P = 0.007], 49.5 s (6 months, 95% CI 9.3-89.7; P = 0.016), and 44.7 s (12 months, 95% CI - 2.7 s-92.1 s; P = 0.065). The relative frequency of angina was 0.78 (95% CI 0.63-0.98; P = 0.032), 0.66 (0.48-0.91; P = 0.012), and 0.58 (0.38-0.88; P = 0.011) at 3-, 6- and 12-months in auto-CD34+ compared with placebo patients. Results remained concordant when analysed by treatment received and when confined to the Phase III dose of 1 × 105 cells/kg. Autologous CD34 + cell therapy significantly decreased mortality (12.1% vs. 2.5%; P = 0.0025) and numerically reduced MACE (38.9% vs. 30.0; P = 0.14) at 24 months. Conclusion: Treatment with auto-CD34+ cells resulted in clinically meaningful durable improvements in TET and AF at 3-, 6- and 12-months, as well as a reduction in 24-month mortality in this patient-level meta-analysis.


Assuntos
Angina Pectoris/terapia , Tolerância ao Exercício , Mortalidade , Transplante de Células-Tronco/métodos , Idoso , Angina Pectoris/fisiopatologia , Antígenos CD34/metabolismo , Feminino , Humanos , Injeções Intramusculares , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Miocárdio , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante Autólogo
7.
Lab Invest ; 98(5): 682-691, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453401

RESUMO

Sonic Hedgehog (Shh) signaling induces neovascularization and angiogenesis. It is not known whether the hedgehog signaling pathway in endothelial cells is essential to angiogenesis. Smoothened (Smo) transduces hedgehog signaling across the cell membrane. This study assessed whether endothelial Smoothened-dependent Shh signaling is required for Shh-mediated angiogenesis and ischemic tissue repair. Endothelial-specific smoothened knockout mice, eSmoNull were created using Cre-lox recombination system. eSmoNull mice had no observable phenotype at baseline and showed normal cardiac function. Smoothened in CD31+ cells isolated from eSmoNull hearts was significantly reduced compared to CD31+ cells from eSmoWT littermate control hearts. Fluorescence immunostaining of eSmoNull heart sections showed Smo expression in endothelial cells was abolished. The hind-limb ischemia (HLI) model was used to assess the response to ischemic injury. Perfusion ratio, limb motor function, and limb necrosis were not significantly different after HLI between eSmoNull mice and eSmoWT. Capillary densities in the ischemic limb in eSmoNull mice were also similar to eSmoWT at 4 weeks after HLI. Next, response to exogenous Shh was assessed in the corneal angiogenesis model. There was no significant difference in corneal angiogenesis induced by administration of Shh pellets between eSmoWT and eSmoNull mice. Furthermore, in vitro experiments demonstrated that direct Shh had limited effects on endothelial cell proliferation and migration. However, conditioned media from Shh-treated fibroblasts had a more potent effect on endothelial cell proliferation and migration than non-treated conditioned media. Furthermore, Shh treatment of fibroblasts dramatically stimulated angiogenic growth factor expression, including PDGF-B, VEGF-A, HGF and IGF. PDGF-B was the most upregulated and may contribute to the large neo-vessels associated with Shh-induced angiogenesis. Taken together, these data demonstrate that Shh signaling via Smoothened in endothelial cells is not required for angiogenesis and ischemic tissue repair. Shh signaling via stromal cells likely mediates its angiogenic effects.


Assuntos
Células Endoteliais/fisiologia , Proteínas Hedgehog/fisiologia , Isquemia/fisiopatologia , Neovascularização Fisiológica , Transdução de Sinais/fisiologia , Receptor Smoothened/fisiologia , Animais , Células Cultivadas , Fibroblastos/fisiologia , Membro Posterior/irrigação sanguínea , Masculino , Camundongos
8.
Circ Res ; 116(9): 1561-78, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908729

RESUMO

The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population.


Assuntos
Transplante de Células/métodos , Terapia Genética/métodos , Isquemia/terapia , Extremidade Inferior/irrigação sanguínea , Doença Arterial Periférica/terapia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Isquemia/genética , Isquemia/cirurgia , Doença Arterial Periférica/genética , Doença Arterial Periférica/cirurgia , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Cardiovasc Drugs Ther ; 31(4): 445-458, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28735360

RESUMO

PURPOSE: The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. METHODS: The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. RESULTS: We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. CONCLUSIONS: The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Animais , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/fisiopatologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica , Humanos
10.
Stem Cells ; 33(12): 3519-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235810

RESUMO

Poor survival and function of transplanted cells in ischemic and inflamed myocardium likely compromises the functional benefit of stem cell-based therapies. We have earlier reported that co-administration of interleukin (IL)-10 and BMPAC enhances cell survival and improves left ventricular (LV) functions after acute myocardial infarction (MI) in mice. We hypothesized that IL-10 regulates microRNA-375 (miR-375) signaling in BMPACs to enhance their survival and function in ischemic myocardium after MI and attenuates left ventricular dysfunction after MI. miR-375 expression is significantly upregulated in BMPACs upon exposure to inflammatory/hypoxic stimulus and also after MI. IL-10 knockout mice display significantly elevated miR-375 levels. We report that ex vivo miR-375 knockdown in BMPAC before transplantation in the ischemic myocardium after MI significantly improve the survival and retention of transplanted BMPACs and also BMPAC-mediated post-infarct repair, neovascularization, and LV functions. Our in vitro studies revealed that knockdown of miR-375-enhanced BMPAC proliferation and tube formation and inhibited apoptosis; over expression of miR-375 in BMPAC had opposite effects. Mechanistically, miR-375 negatively regulated 3-phosphoinositide-dependent protein kinase-1 (PDK-1) expression and PDK-1-mediated activation of PI3kinase/AKT signaling. Interestingly, BMPAC isolated from IL-10-deficient mice showed elevated basal levels of miR-375 and exhibited functional deficiencies, which were partly rescued by miR-375 knockdown, enhancing BMPAC function in vitro and in vivo. Taken together, our studies suggest that miR-375 is negatively associated with BMPAC function and survival and IL-10-mediated repression of miR-375 enhances BMPAC survival and function.


Assuntos
Células da Medula Óssea/metabolismo , Interleucina-10/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/patologia , Técnicas de Silenciamento de Genes , Interleucina-10/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miocárdio/patologia , Células-Tronco/patologia
11.
FASEB J ; 29(4): 1208-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25466901

RESUMO

We have previously shown that TNF-tumor necrosis factor receptor-2/p75 (TNFR2/p75) signaling plays a critical role in ischemia-induced neovascularization in skeletal muscle and heart tissues. To determine the role of TNF-TNFR2/p75 signaling in ischemia-induced inflammation and muscle regeneration, we subjected wild-type (WT) and TNFR2/p75 knockout (p75KO) mice to hind limb ischemia (HLI) surgery. Ischemia induced significant and long-lasting inflammation associated with considerable decrease in satellite-cell activation in p75KO muscle tissue up to 10 d after HLI surgery. To determine the possible additive negative roles of tissue aging and the absence of TNFR2/p75, either in the tissue or in the bone marrow (BM), we generated 2 chimeric BM transplantation (BMT) models where both young green fluorescent protein (GFP)-positive p75KO and WT BM-derived cells were transplanted into adult p75KO mice. HLI surgery was performed 1 mo after BMT, after confirming complete engraftment of the recipient BM with GFP donor cells. In adult p75KO with the WT-BMT, proliferative (Ki67(+)) cells were detected only by d 28 and were exclusively GFP(+), suggesting significantly delayed contribution of young WT-BM cell to adult p75KO ischemic tissue recovery. No GFP(+) young p75KO BM cells survived in adult p75KO tissue, signifying the additive negative roles of tissue aging combined with decreased/absent TNFR2/p75 signaling in postischemic recovery.


Assuntos
Isquemia/patologia , Isquemia/fisiopatologia , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/genética , Células Satélites de Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Apoptose , Transplante de Medula Óssea , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Membro Posterior/irrigação sanguínea , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Isquemia/terapia , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica , Infiltração de Neutrófilos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/genética , Regeneração , Transdução de Sinais
12.
Circ Res ; 114(2): 333-44, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24436429

RESUMO

Myocardial infarction is a leading cause of death among all cardiovascular diseases. The analysis of molecular mechanisms by which the ischemic myocardium initiates repair and remodeling indicates that secreted soluble factors are key players in communication to local and distant tissues, such as bone marrow. Recently, actively secreted membrane vesicles, including exosomes, are being recognized as new candidates with important roles in intercellular and tissue-level communication. In this review, we critically examine the emerging role of exosomes in local and distant microcommunication mechanisms after myocardial infarction. A comprehensive understanding of the role of exosomes in cardiac repair after myocardial infarction could bridge a major gap in knowledge of the repair mechanism after myocardial injury.


Assuntos
Exossomos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Regeneração , Animais , Comunicação Celular , Regulação da Expressão Gênica , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Transplante de Células-Tronco
13.
J Mol Cell Cardiol ; 81: 49-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655934

RESUMO

The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.


Assuntos
Células da Medula Óssea/metabolismo , Quimiocina CXCL12/genética , Células-Tronco Mesenquimais/metabolismo , Isquemia Miocárdica/genética , Receptores CXCR4/genética , Quinases da Família src/genética , Animais , Benzilaminas , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Quimiotaxia/genética , Ciclamos , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos/farmacologia , Indóis/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores CXCR4/deficiência , Transdução de Sinais , Sulfonamidas/farmacologia , Quinases da Família src/metabolismo
14.
Circ Res ; 112(9): 1288-302, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23620237

RESUMO

The age-adjusted prevalence of peripheral arterial disease in the US population was estimated to approach 12% in 1985, and as the population ages, the overall population having peripheral arterial disease is predicted to rise. The clinical consequences of occlusive peripheral arterial disease include intermittent claudication, that is, pain with walking, and critical limb ischemia (CLI), which includes pain at rest and loss of tissue integrity in the distal limbs, which may ultimately lead to amputation of a portion of the lower extremity. The risk factors for CLI are similar to those linked to coronary artery disease and include advanced age, smoking, diabetes mellitus, hyperlipidemia, and hypertension. The worldwide incidence of CLI was estimated to be 500 to 1000 cases per million people per year in 1991. The prognosis is poor for CLI subjects with advanced limb disease. One study of >400 such subjects in the United Kingdom found that 25% required amputation and 20% (including some subjects who had required amputation) died within 1 year. In the United States, ≈280 lower-limb amputations for ischemic disease are performed per million people each year. The first objective in treating CLI is to increase blood circulation to the affected limb. Theoretically, increased blood flow could be achieved by increasing the number of vessels that supply the ischemic tissue with blood. The use of pharmacological agents to induce new blood vessel growth for the treatment or prevention of pathological clinical conditions has been called therapeutic angiogenesis. Since the identification of the endothelial progenitor cell in 1997 by Asahara and Isner, the field of cell-based therapies for peripheral arterial disease has been in a state of continuous evolution. Here, we review the current state of that field.


Assuntos
Ensaios Clínicos como Assunto , Células Endoteliais/transplante , Doença Arterial Periférica/cirurgia , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Salvamento de Membro , Neovascularização Fisiológica , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Recuperação de Função Fisiológica , Regeneração , Fatores de Tempo , Resultado do Tratamento
15.
Circ Res ; 113(1): 20-1, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23788504

RESUMO

In his 2000 best-selling novel, Dan Brown tells the fictional story of an apparent plot by the Illuminati, the self-proclaimed "enlightened ones," against the Vatican. Apparently life truly does sometimes imitate art.


Assuntos
Enganação , Segurança do Paciente/normas , Transplante de Células-Tronco/ética , Transplante de Células-Tronco/normas , Humanos
17.
Circ Res ; 112(5): 816-25, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23429605

RESUMO

RATIONALE: Preclinical studies indicate that adult stem cells induce tissue repair by activating endogenous stem cells through the stromal cell-derived factor-1:chemokine receptor type 4 axis. JVS-100 is a DNA plasmid encoding human stromal cell-derived factor-1. OBJECTIVE: We tested in a phase 1, open-label, dose-escalation study with 12 months of follow-up in subjects with ischemic cardiomyopathy to see if JVS-100 improves clinical parameters. METHODS AND RESULTS: Seventeen subjects with ischemic cardiomyopathy, New York Heart Association class III heart failure, with an ejection fraction ≤40% on stable medical therapy, were enrolled to receive 5, 15, or 30 mg of JVS-100 via endomyocardial injection. The primary end points for safety and efficacy were at 1 and 4 months, respectively. The primary safety end point was a major adverse cardiac event. Efficacy end points were change in quality of life, New York Heart Association class, 6-minute walk distance, single photon emission computed tomography, N-terminal pro-brain natruretic peptide, and echocardiography at 4 and 12 months. The primary safety end point was met. At 4 months, all of the cohorts demonstrated improvements in 6-minute walk distance, quality of life, and New York Heart Association class. Subjects in the 15- and 30-mg dose groups exhibited improvements in 6-minute walk distance (15 mg: median [range]: 41 minutes [3-61 minutes]; 30 mg: 31 minutes [22-74 minutes]) and quality of life (15 mg: -16 points [+1 to -32 points]; 30 mg: -24 points [+17 to -38 points]) over baseline. At 12 months, improvements in symptoms were maintained. CONCLUSIONS: These data highlight the importance of defining the molecular mechanisms of stem cell-based tissue repair and suggest that overexpression of stromal cell-derived factor-1 via gene therapy is a strategy for improving heart failure symptoms in patients with ischemic cardiomyopathy.


Assuntos
Quimiocina CXCL12/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Plasmídeos , Idoso , Quimiocina CXCL12/metabolismo , Estudos de Coortes , Relação Dose-Resposta a Droga , Ecocardiografia , Tolerância ao Exercício , Feminino , Seguimentos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Tomografia por Emissão de Pósitrons , Qualidade de Vida , Resultado do Tratamento
18.
Circ Res ; 113(10): 1148-58, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24044950

RESUMO

RATIONALE: A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. OBJECTIVE: The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the cross-talk between angiogenesis and myogenesis in adults. METHODS AND RESULTS: Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-Cre(ERT2); Gli3(Flox/Flox) mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle-associated transcription factor E2F1. CONCLUSIONS: This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair-associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine.


Assuntos
Isquemia/fisiopatologia , Fatores de Transcrição Kruppel-Like/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Fator de Transcrição E2F1/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Proteínas Hedgehog/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Proteína Gli3 com Dedos de Zinco
19.
Proc Natl Acad Sci U S A ; 109(6): 2015-20, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22171010

RESUMO

Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1(-/-)) or neural crest (NC)-specific (NC-Foxc1(-/-)) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1(+/-) and NC-Foxc1(+/-)) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1(+/-) and NC-Foxc1(+/-) mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Córnea/irrigação sanguínea , Fatores de Transcrição Forkhead/metabolismo , Álcalis , Animais , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/metabolismo , Segmento Anterior do Olho/patologia , Vasos Sanguíneos/patologia , Queimaduras/patologia , Córnea/patologia , Substância Própria/enzimologia , Substância Própria/patologia , Anormalidades do Olho/complicações , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias , Haploinsuficiência/genética , Heterozigoto , Linfangiogênese , Metaloproteinases da Matriz/metabolismo , Camundongos , Mutação/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Pupila , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Mol Cell Cardiol ; 74: 231-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25009075

RESUMO

The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.


Assuntos
Células da Medula Óssea/citologia , Epitopos/metabolismo , Fibronectinas/metabolismo , Isquemia/terapia , Nanofibras/administração & dosagem , Peptídeos/administração & dosagem , Animais , Materiais Biocompatíveis , Células da Medula Óssea/metabolismo , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epitopos/química , Fibronectinas/química , Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Membro Posterior/lesões , Integrinas/metabolismo , Isquemia/patologia , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nanofibras/química , Neovascularização Fisiológica , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA