Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32386575

RESUMO

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Glicosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/metabolismo , Galactanos/metabolismo , Glicosiltransferases/genética , Lipopolissacarídeos/metabolismo , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Filogenia , Conformação Proteica , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748580

RESUMO

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Assuntos
Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Polissacarídeos Bacterianos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630725

RESUMO

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Assuntos
Mycobacterium abscessus , Humanos , Proteínas de Bactérias/genética , Lipopolissacarídeos/química , Mutação
4.
Nat Chem Biol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951648

RESUMO

Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.

5.
Proc Natl Acad Sci U S A ; 120(29): e2301302120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428935

RESUMO

Carbapenemase and extended ß-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/genética , Lipopolissacarídeos , Antígenos O , Klebsiella , Western Blotting , Infecções por Klebsiella/prevenção & controle
6.
J Biol Chem ; 300(7): 107420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815868

RESUMO

Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Antígenos O , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Antígenos O/metabolismo , Antígenos O/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Família Multigênica
7.
J Biol Chem ; 299(5): 104609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924942

RESUMO

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-ß-d-manno-oct-2-ulosonic acid (ß-Kdo) from cytidine-5'-monophospho-ß-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with ß-(2→4) and ß-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining ß-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the ß-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/ß domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.


Assuntos
Cápsulas Bacterianas , Glicosiltransferases , Cápsulas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Lipopolissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Transferases/metabolismo , Polissacarídeos Bacterianos/metabolismo
8.
Chemistry ; 30(33): e202400886, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38590211

RESUMO

A de novo asymmetric strategy for the synthesis of d-bradyrhizose diastereomers from an achiral ketoenolester precursor is described. Key transformations used in the stereodivergent approach include two Noyori asymmetric reductions, an Achmatowicz rearrangement, diastereoselective alkene oxidations, and the first example of a palladium(0)-catalyzed glycosylation of a vinylogous pyranone. The isomeric composition of the bicyclic reducing sugars obtained was analyzed and their behaviour was compared to the natural product, revealing key stereocentres that impact the overall distribution.

9.
Nat Chem Biol ; 18(5): 530-537, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393575

RESUMO

Bacterial surface polysaccharides are assembled by glycosyltransferase enzymes that typically use sugar nucleotide or polyprenyl-monophosphosugar activated donors. Characterized representatives exist for many monosaccharides but neither the donor nor the corresponding glycosyltransferases have been definitively identified for ribofuranose residues found in some polysaccharides. Klebsiella pneumoniae O-antigen polysaccharides provided prototypes to identify dual-domain ribofuranosyltransferase proteins catalyzing a two-step reaction sequence. Phosphoribosyl-5-phospho-D-ribosyl-α-1-diphosphate serves as the donor for a glycan acceptor-specific phosphoribosyl transferase (gPRT), and a more promiscuous phosphoribosyl-phosphatase (PRP) then removes the residual 5'-phosphate. The 2.5-Å resolution crystal structure of a dual-domain ribofuranosyltransferase ortholog from Thermobacillus composti revealed a PRP domain that conserves many features of the phosphatase members of the haloacid dehalogenase family, and a gPRT domain that diverges substantially from all previously characterized phosphoribosyl transferases. The gPRT represents a new glycosyltransferase fold conserved in the most abundant ribofuranosyltransferase family.


Assuntos
Glicosiltransferases , Polissacarídeos Bacterianos , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Klebsiella pneumoniae/metabolismo , Antígenos O/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/química , Polissacarídeos Bacterianos/metabolismo
10.
Nat Chem Biol ; 18(1): 81-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34754101

RESUMO

Emerging evidence suggests that host glycans influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal that the receptor-binding domain (RBD) of the spike (S) protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (Sia), with preference for monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind to the RBD. The monomeric affinities (Kd = 100-200 µM) of gangliosides for the RBD are similar to another negatively charged glycan ligand of the RBD proposed as a viral co-receptor, heparan sulfate (HS) dp2-dp6 oligosaccharides. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to angiotensin-converting enzyme 2 (ACE2)-expressing cells is decreased following depletion of cell surface Sia levels using three approaches: sialyltransferase (ST) inhibition, genetic knockout of Sia biosynthesis, or neuraminidase treatment. These effects on RBD binding and both pseudotyped and authentic SARS-CoV-2 viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.


Assuntos
Glicolipídeos/metabolismo , SARS-CoV-2/metabolismo , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Humanos
11.
Immunity ; 42(6): 1143-58, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070485

RESUMO

Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.


Assuntos
Moléculas de Adesão Celular/metabolismo , Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/etiologia , Tolerância Imunológica , Interleucina-10/metabolismo , Lectinas Tipo C/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Receptores de Superfície Celular/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Tolerância ao Transplante , Regulação para Cima
12.
Chem Rev ; 122(20): 15717-15766, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820164

RESUMO

Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicoproteínas , Glicosídeo Hidrolases/metabolismo , Proteínas Virais , Açúcares
13.
J Biol Chem ; 298(3): 101678, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122792

RESUMO

Detecting the mycobacterial glycolipid lipoarabinomannan (LAM) in urine by anti-LAM antibodies fills a gap in the diagnostic armamentarium of much needed simple rapid tests for tuberculosis, but lacks high sensitivity in all patient groups. A better understanding of LAM structure from clinically relevant strains may allow improvements in diagnostic performance. De et al. have recently determined the structures of LAM from three epidemiologically important lineages of Mycobacterium tuberculosis and probed their interaction with an anti-LAM monoclonal antibody. Their results not only identify a series of tailoring modifications that impact antibody binding but also provide a roadmap for improving U-LAM-based diagnostics.


Assuntos
Lipopolissacarídeos , Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/urina , Mycobacterium tuberculosis/química , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia , Tuberculose/urina
14.
Nat Chem Biol ; 17(7): 806-816, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958792

RESUMO

The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans. Pulldown of the LiGA with lectins followed by deep sequencing of the barcodes in the bound phage decodes the optimal structure and density of the recognized glycans. The LiGA is target agnostic and can measure the glycan-binding profile of lectins, such as CD22, on cells in vitro and immune cells in a live mouse. From a mixture of multivalent glycan probes, LiGAs identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and in vivo.


Assuntos
Bacteriófago M13/química , Análise em Microsséries , Polissacarídeos/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Camundongos , Polissacarídeos/genética , Polissacarídeos/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(46): 28735-28742, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139538

RESUMO

Paramecium bursaria chlorella virus-1 (PBCV-1) is a large double-stranded DNA (dsDNA) virus that infects the unicellular green alga Chlorella variabilis NC64A. Unlike many other viruses, PBCV-1 encodes most, if not all, of the enzymes involved in the synthesis of the glycans attached to its major capsid protein. Importantly, these glycans differ from those reported from the three domains of life in terms of structure and asparagine location in the sequon of the protein. Previous data collected from 20 PBCV-1 spontaneous mutants (or antigenic variants) suggested that the a064r gene encodes a glycosyltransferase (GT) with three domains, each with a different function. Here, we demonstrate that: domain 1 is a ß-l-rhamnosyltransferase; domain 2 is an α-l-rhamnosyltransferase resembling only bacterial proteins of unknown function, and domain 3 is a methyltransferase that methylates the C-2 hydroxyl group of the terminal α-l-rhamnose (Rha) unit. We also establish that methylation of the C-3 hydroxyl group of the terminal α-l-Rha is achieved by another virus-encoded protein A061L, which requires an O-2 methylated substrate. This study, thus, identifies two of the glycosyltransferase activities involved in the synthesis of the N-glycan of the viral major capsid protein in PBCV-1 and establishes that a single protein A064R possesses the three activities needed to synthetize the 2-OMe-α-l-Rha-(1→2)-ß-l-Rha fragment. Remarkably, this fragment can be attached to any xylose unit.


Assuntos
Proteínas do Capsídeo/metabolismo , Glicosiltransferases/metabolismo , Metiltransferases/metabolismo , Modelos Estruturais , Phycodnaviridae/enzimologia , Escherichia coli , Ramnose/metabolismo
16.
Nat Chem Biol ; 16(4): 450-457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152541

RESUMO

Lipopolysaccharide O-antigen is an attractive candidate for immunotherapeutic strategies targeting antibiotic-resistant Klebsiella pneumoniae. Several K. pneumoniae O-serotypes are based on a shared O2a-antigen backbone repeating unit: (→ 3)-α-Galp-(1 → 3)-ß-Galf-(1 →). O2a antigen is synthesized on undecaprenol diphosphate in a pathway involving the O2a polymerase, WbbM, before its export by an ATP-binding cassette transporter. This dual domain polymerase possesses a C-terminal galactopyranosyltransferase resembling known GT8 family enzymes, and an N-terminal DUF4422 domain identified here as a galactofuranosyltransferase defining a previously unrecognized family (GT111). Functional assignment of DUF4422 explains how galactofuranose is incorporated into various polysaccharides of importance in vaccine production and the food industry. In the 2.1-Å resolution structure, three WbbM protomers associate to form a flattened triangular prism connected to a central stalk that orients the active sites toward the membrane. The biochemical, structural and topological properties of WbbM offer broader insight into the mechanisms of assembly of bacterial cell-surface glycans.


Assuntos
Glicosiltransferases/metabolismo , Antígenos O/metabolismo , Antígenos O/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Glicosiltransferases/fisiologia , Hexosiltransferases , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/química , Polissacarídeos Bacterianos/química
17.
J Org Chem ; 87(7): 4894-4907, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290061

RESUMO

A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.


Assuntos
Álcoois , Ácidos Carboxílicos , Acilação , Ésteres , Hidrólise
18.
J Biol Chem ; 295(15): 5110-5123, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32107309

RESUMO

Despite impressive progress made over the past 20 years in our understanding of mycolylarabinogalactan-peptidoglycan (mAGP) biogenesis, the mechanisms by which the tubercle bacillus Mycobacterium tuberculosis adapts its cell wall structure and composition to various environmental conditions, especially during infection, remain poorly understood. Being the central portion of the mAGP complex, arabinogalactan (AG) is believed to be the constituent of the mycobacterial cell envelope that undergoes the least structural changes, but no reports exist supporting this assumption. Herein, using recombinantly expressed mycobacterial protein, bioinformatics analyses, and kinetic and biochemical assays, we demonstrate that the AG can be remodeled by a mycobacterial endogenous enzyme. In particular, we found that the mycobacterial GlfH1 (Rv3096) protein exhibits exo-ß-d-galactofuranose hydrolase activity and is capable of hydrolyzing the galactan chain of AG by recurrent cleavage of the terminal ß-(1,5) and ß-(1,6)-Galf linkages. The characterization of this galactosidase represents a first step toward understanding the remodeling of mycobacterial AG.


Assuntos
Amoeba/crescimento & desenvolvimento , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Amoeba/microbiologia , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/genética , Hidrólise , Cinética , Filogenia , Homologia de Sequência
19.
Am J Transplant ; 21(11): 3649-3662, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34101982

RESUMO

ABO-incompatible (ABOi) transplantation requires preemptive antibody reduction; however, the relationship between antibody-mediated rejection (AMR) and ABO-antibodies, quantified by hemagglutination (HA), is inconsistent, possibly reflecting variable graft resistance to AMR or HA assay limitations. Using an ABH-glycan microarray, we quantified ABO-A antigen-subtype (A-subtype)-specific IgM and IgG in 53 ABO-O recipients of ABO-A kidneys, before and after antibody removal (therapeutic plasma exchange [TPE] or ABO-A-trisaccharide immunoadsorption [IA]) and 1-year posttransplant. IgM binding to all A-subtypes correlated highly (R2  ≥ .90) and A-subtype antibody specificities was reduced equally by IA versus TPE. IgG binding to the A-subtypes (II-IV) expressed in kidney correlated poorly (.27 ≤ R2  ≤ .69). Reduction of IgG specific to A-subtype-II was equivalent for IA and TPE, whereas IgG specific to A-subtypes-III/IV was not as greatly reduced by IA (p < .005). One-year posttransplant, IgG specific to A-II remained the most reduced antibody. Immunostaining revealed only A-II on vascular endothelium but A-subtypes II-III/IV on tubular epithelium. These results show that ABO-A-trisaccharide is sufficient for IgM binding to all A-subtypes; this is true for IgG binding to A-II, but not subtypes-III/IV, which exhibits varying degrees of specificity. We identify A-II as the major, but importantly not the sole, antigen relevant to treatment and immune modulation in adult ABO-A-incompatible kidney transplantation.


Assuntos
Transplante de Rim , Sistema ABO de Grupos Sanguíneos , Adulto , Incompatibilidade de Grupos Sanguíneos , Rejeição de Enxerto , Humanos , Doadores Vivos
20.
Nat Chem Biol ; 15(6): 632-640, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036922

RESUMO

Several important Gram-negative bacterial pathogens possess surface capsular layers composed of hypervariable long-chain polysaccharides linked via a conserved 3-deoxy-ß-D-manno-oct-2-ulosonic acid (ß-Kdo) oligosaccharide to a phosphatidylglycerol residue. The pathway for synthesis of the terminal glycolipid was elucidated by determining the structures of reaction intermediates. In Escherichia coli, KpsS transfers a single Kdo residue to phosphatidylglycerol; this primer is extended using a single enzyme (KpsC), possessing two cytidine 5'-monophosphate (CMP)-Kdo-dependent glycosyltransferase catalytic centers with different linkage specificities. The structure of the N-terminal ß-(2→4) Kdo transferase from KpsC reveals two α/ß domains, supplemented by several helices. The N-terminal Rossmann-like domain, typically responsible for acceptor binding, is severely reduced in size compared with canonical GT-B folds in glycosyltransferases. The similar structure of the C-terminal ß-(2→7) Kdo transferase indicates a past gene duplication event. Both Kdo transferases have a narrow active site tunnel, lined with key residues shared with GT99 ß-Kdo transferases. This enzyme provides the prototype for the GT107 family.


Assuntos
Cápsulas Bacterianas/metabolismo , Glicolipídeos/biossíntese , Bactérias Gram-Negativas/metabolismo , Transferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Transferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA