Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nature ; 620(7976): 1018-1024, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612503

RESUMO

Coral reefs are highly diverse ecosystems that thrive in nutrient-poor waters, a phenomenon frequently referred to as the Darwin paradox1. The energy demand of coral animal hosts can often be fully met by the excess production of carbon-rich photosynthates by their algal symbionts2,3. However, the understanding of mechanisms that enable corals to acquire the vital nutrients nitrogen and phosphorus from their symbionts is incomplete4-9. Here we show, through a series of long-term experiments, that the uptake of dissolved inorganic nitrogen and phosphorus by the symbionts alone is sufficient to sustain rapid coral growth. Next, considering the nitrogen and phosphorus budgets of host and symbionts, we identify that these nutrients are gathered through symbiont 'farming' and are translocated to the host by digestion of excess symbiont cells. Finally, we use a large-scale natural experiment in which seabirds fertilize some reefs but not others, to show that the efficient utilization of dissolved inorganic nutrients by symbiotic corals established in our laboratory experiments has the potential to enhance coral growth in the wild at the ecosystem level. Feeding on symbionts enables coral animals to tap into an important nutrient pool and helps to explain the evolutionary and ecological success of symbiotic corals in nutrient-limited waters.


Assuntos
Antozoários , Ecossistema , Nitrogênio , Fósforo , Fotossíntese , Simbiose , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Antozoários/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Simbiose/fisiologia , Aves/fisiologia
3.
Mol Phylogenet Evol ; 164: 107265, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274488

RESUMO

While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.


Assuntos
Agaricales , Antozoários , Animais , Antozoários/genética , Biologia , Recifes de Corais , Filogenia
4.
Proc Natl Acad Sci U S A ; 113(16): 4416-21, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044109

RESUMO

Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world's warmest reefs are symbioses with a newly discovered alga,Symbiodinium thermophilum Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show thatS. thermophilumis a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general.


Assuntos
Antozoários , Dinoflagellida/genética , Ecossistema , Variação Genética , Salinidade , Estresse Fisiológico , Simbiose , Animais , Oceanos e Mares
5.
Ecology ; 99(2): 421-437, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205289

RESUMO

Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance with depth, combined with the possible narrower tolerance to environmental factors, further suggests that mesophotic corals may in fact be more vulnerable than previously conceived. Furthermore, we posit that the observed temporal segregation in reproduction could lead to assortative mating, and this, in turn, may facilitate adaptive divergence across depth.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Reprodução , Estações do Ano
6.
PLoS Comput Biol ; 11(6): e1004151, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26086846

RESUMO

Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly seasonal nature of annual WPD outbreaks.


Assuntos
Antozoários , Mudança Climática , Doenças Transmissíveis/veterinária , Modelos Biológicos , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Biologia Computacional , Recifes de Corais , Monitoramento Ambiental , Temperatura
7.
Arch Environ Contam Toxicol ; 70(2): 265-88, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26487337

RESUMO

Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments­produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.


Assuntos
Antozoários/efeitos dos fármacos , Benzofenonas/toxicidade , Monitoramento Ambiental , Protetores Solares/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Havaí , Ilhas Virgens Americanas
8.
Biol Reprod ; 90(6): 122, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24790160

RESUMO

Reproductive development of anthozoans reveals wide range of breeding strategies. Here, we report the occurrence of trioecy in the sea anemone Aiptasia diaphana (co-occurrence of males, females, and hermaphrodites), which so far was well documented only in plants. Age-homogeneous populations were obtained from pedal lacerates (asexual propagules) and cultured under control conditions. Careful documentation of growth, gamete morphology, and vertebrate-like steroid (i.e., progesterone, testosterone, and estradiol) levels were carried out over a 9-wk period between 4 and 12 wk postlaceration (wpl). First phenotypic signs of gametes development were observed in 6-wk-old anemones, pointing to the differentiation of males and hermaphrodites. While the males exhibited cellular progression of spermatogenesis, the hermaphrodites underwent a process of sex allocation, giving rise to male, female, and hermaphrodite phenotypes. Testosterone levels were relatively high prior to gamete appearance (4 wpl) and later on during gamete maturation (10 wpl). Conversely, estradiol levels steadily increased from 6 to 10 wpl, reaching their peak concomitant with oocyte maturation. Interestingly, increased oocyte atresia incidences were recorded during 9-12 wpl, coinciding with declining levels of steroid hormones. These results point to a strong similarity between the activity of sex steroids in vertebrates and that of vertebrate-like sex steroids on critical stages of A. diaphana's sexual differentiation and gametogenic cycle. The reproductive characteristics of A. diaphana make this anthozoan an important model species for the study of evolutionary drivers and processes underlying sexual development.


Assuntos
Células Germinativas/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Organismos Hermafroditas/fisiologia , Reprodução/fisiologia , Anêmonas-do-Mar/fisiologia , Diferenciação Sexual/fisiologia , Animais , Estradiol/metabolismo , Feminino , Masculino , Modelos Biológicos , Caracteres Sexuais , Especificidade da Espécie , Estatísticas não Paramétricas , Testosterona/metabolismo
9.
PLoS Biol ; 9(4): e1000606, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21483714

RESUMO

Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.


Assuntos
Biodiversidade , Recifes de Corais , Peixes , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Humanos , Densidade Demográfica
10.
Microb Ecol ; 67(1): 177-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141943

RESUMO

Black band disease (BBD), characterized by a black mat or line that migrates across a coral colony leaving behind it a bare skeleton, is a persistent disease affecting massive corals worldwide. Previous microscopic and molecular examination of this disease in faviid corals from the Gulf of Eilat revealed a number of possible pathogens with the most prominent being a cyanobacterium identified as Pseudoscillatoria coralii. We examined diseased coral colonies using histopathological and molecular methods in order to further assess the possible role of this cyanobacterium, its mode of entry, and pathological effects on the coral host tissues. Affected areas of colonies with BBD were sampled for examination using both light and transmission electron microscopies. Results showed that this dominant cyanobacterium was found on the coral surface, at the coral-skeletal interface, and invading the polyp tissues and gastrovascular cavity. Although tissues surrounding the invasive cyanobacterial filaments did not show gross morphological alterations, microscopic examination revealed that the coral cells surrounding the lesion were dissociated, necrotic, and highly vacuolated. No amoebocytes were evident in the mesoglea of affected tissues suggesting a possible repression of the coral immune response. Morphological and molecular similarity of the previously isolated BBD-associated cyanobacterium P. coralii to the current samples strengthens the premise that this species is involved in the disease in this coral. These results indicate that the cyanobacteria may play a pivotal role in this disease and that the mode of entry may be via ingestion, penetrating the coral via the gastrodermis, as well as through the skeletal-tissue interface.


Assuntos
Antozoários/microbiologia , Cianobactérias/patogenicidade , Animais , Antozoários/ultraestrutura , Cianobactérias/classificação , DNA Bacteriano/genética , Oceano Índico , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética
11.
Ecotoxicology ; 23(2): 175-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352829

RESUMO

Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected].


Assuntos
Antozoários/efeitos dos fármacos , Benzofenonas/toxicidade , Protetores Solares/toxicidade , Raios Ultravioleta , Animais , Recifes de Corais , Filtração , Larva/efeitos dos fármacos , Dose Letal Mediana , Microscopia Eletrônica de Transmissão , Nível de Efeito Adverso não Observado , Análise de Regressão , Testes de Toxicidade
12.
Microb Ecol ; 65(1): 50-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22864854

RESUMO

Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.


Assuntos
Antozoários/microbiologia , Bactérias/patogenicidade , Metagenoma , Animais , Antozoários/ultraestrutura , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Oceano Índico , Microscopia Eletrônica de Transmissão , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
iScience ; 26(5): 106533, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250314

RESUMO

Constraints on organisms possessing a unitary body plan appear almost absent from colonial organisms. Like unitary organisms, however, coral colonies seemingly delay reproduction until reaching a critical size. Elucidating ontogenetic processes, such as puberty and aging are complicated by corals' modular design, where partial mortality and fragmentation lead to distortions in colony size-age relationships. We explored these enigmatic relations and their influence on reproduction by fragmenting sexually mature colonies of five coral species into sizes below the known size at first reproduction, nurturing them for prolonged periods, and examining their reproductive capacity and trade-offs between growth rates and reproductive investment. Most fragments were reproductive regardless of their size, and growth rates hardly affected reproduction. Our findings suggest that once the ontogenetic milestone of puberty is reached, corals retain reproductive capacity irrespective of colony size, highlighting the key role that aging may have in colonial animals, which are commonly considered non-aging.

14.
Mar Pollut Bull ; 193: 115212, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385181

RESUMO

Urbanization and infrastructure development have changed the night-time light regime of many coastal marine habitats. Consequently, Artificial Light at Night (ALAN) is becoming a global ecological concern, particularly in nearshore coral reef ecosystems. However, the effects of ALAN on coral architecture and their optical properties are unexplored. Here, we conducted a long-term ex situ experiment (30 months from settlement) on juvenile Stylophora pistillata corals grown under ALAN conditions using light-emitting diodes (LEDs) and fluorescent lamps, mimicking light-polluted habitats. We found that corals exposed to ALAN exhibited altered skeletal morphology that subsequently resulted in reduced light capture capacity, while also gaining better structural and optical modifications to increased light levels than their ambient-light counterparts. Additionally, light-polluted corals developed a more porous skeleton compared to the control corals. We suggest that ALAN induces light stress in corals, leading to a decrease in the solar energy available for photosynthesis during daytime illumination.


Assuntos
Antozoários , Animais , Poluição Luminosa , Ecossistema , Recifes de Corais , Corantes , Luz
15.
Sci Total Environ ; 891: 164493, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286001

RESUMO

Extreme weather events are increasing in frequency and magnitude. Consequently, it is important to understand their effects and remediation. Resilience reflects the ability of an ecosystem to absorb change, which is important for understanding ecological dynamics and trajectories. To describe the impact of a powerful storm on coral reef structural complexity, we used novel computational tools and detailed 3D reconstructions captured at three time points over three years. Our data-set Reefs4D of 21 co-registered image-based models enabled us to calculate the differences at seven sites over time and is released with the paper. We employed six geometrical metrics, two of which are new algorithms for calculating fractal dimension of reefs in full 3D. We conducted a multivariate analysis to reveal which sites were affected the most and their relative recovery. We also explored the changes in fractal dimension per size category using our cube-counting algorithm. Three metrics showed a significant difference between time points, i.e., decline and subsequent recovery in structural complexity. The multivariate analysis and the results per size category showed a similar trend. Coral reef resilience has been the subject of seminal studies in ecology. We add important information to the discussion by focusing on 3D structure through image-based modeling. The full picture shows resilience in structural complexity, suggesting that the reef has not gone through a catastrophic phase shift. Our novel analysis framework is widely transferable and useful for research, monitoring, and management.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Mudança Climática , Fractais
16.
Ecology ; 103(9): e3760, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35582927

RESUMO

Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide-scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral-reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long-term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0-45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1-2-day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long-term and viable refuge for corals in the face of global environmental changes.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema , Reprodução , Água do Mar
17.
Commun Biol ; 5(1): 537, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654953

RESUMO

Fluorescence is highly prevalent in reef-building corals, nevertheless its biological role is still under ongoing debate. This feature of corals was previously suggested to primarily screen harmful radiation or facilitate coral photosynthesis. In mesophotic coral ecosystems (MCEs; 30-150 m depth) corals experience a limited, blue-shifted light environment. Consequently, in contrast to their shallow conspecifics, they might not be able to rely on photosynthates from their photosymbionts as their main energy source. Here, we experimentally test an alternative hypothesis for coral fluorescence: a prey-lure mechanism for plankton. We show that plankton exhibit preferential swimming towards green fluorescent cues and that compared to other morphs, higher predation rates are recorded in a green fluorescing morph of the mesophotic coral Euphyllia paradivisa. The evidence provided here - that plankton are actively attracted to fluorescent signals - indicates the significant role of fluorescence in amplifying the nutritional sink adjacent to coral reefs.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Fluorescência , Luz , Plâncton
18.
Commun Biol ; 5(1): 861, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002592

RESUMO

The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of the small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4-5 m) and mesophotic (45-50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures. The results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light-limited environments.


Assuntos
Antozoários , Animais , Ecossistema , Fotossíntese , Simbiose , Microtomografia por Raio-X
19.
Sci Total Environ ; 830: 154749, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339542

RESUMO

The rapid decline of vulnerable coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. Examining how to upgrade these tools may uncover options to better support or increase biodiversity of coral reefs. As many of the issues facing reef restoration today deal with the scalability and effectiveness of restoration efforts, there is an urgency to invest in technology that can help reach ecosystem-scale. Here, we provide an overview on the evolution to current state of artificial reefs as a reef reformation tool and discuss a blueprint with which to guide the next generation of biomimetic artificial habitats for ecosystem support. Currently, existing artificial structures have difficulty replicating the 3D complexity of coral habitats and scaling them to larger areas can be problematic in terms of production and design. We introduce a novel customizable 3D interface for producing scalable, biomimetic artificial structures, utilizing real data collected from coral ecosystems. This interface employs 3D technologies, 3D imaging and 3D printing, to extract core reef characteristics, which can be translated and digitized into a 3D printed artificial reef. The advantages of 3D printing lie in providing customized tools by which to integrate the vital details of natural reefs, such as rugosity and complexity, into a sustainable manufacturing process. This methodology can offer economic solutions for developing both small and large-scale biomimetic structures for a variety of restoration situations, that closely resemble the coral reefs they intend to support.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Biomimética , Ecossistema
20.
Commun Biol ; 4(1): 202, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589736

RESUMO

Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation.


Assuntos
Aclimatação , Antozoários/crescimento & desenvolvimento , Recifes de Corais , Animais , Antozoários/genética , Larva/genética , Larva/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA