Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nanobiotechnology ; 18(1): 34, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070342

RESUMO

BACKGROUND: The polymer-based drug/gene delivery is promising for the treatment of inherent or acquire disease, because of the polymer's structural flexibility, larger capacity for therapeutic agent, low host immunogenicity and less cost. Antisense therapy is an approach to fighting genetic disorders or infections using antisense oligonucleotides (AOs). Unfortunately, the naked AOs showed low therapeutic efficacy in vivo and in clinical trial due to their poor cellular uptake and fast clearance in bloodstream. In this study, a series of triazine-cored amphiphilic polymers (TAPs) were investigated for their potential to enhance delivery of AOs, 2'-O-methyl phosphorothioate RNA (2'-OMePS) and phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. RESULTS: TAPs significantly enhanced AO-induced exon-skipping in a GFP reporter-based myoblast and myotube culture system, and observed cytotoxicity of the TAPs were lower than Endoporter, Lipofectamine-2000 or PEI 25K. Application of optimized formulations of TAPs with AO targeted to dystrophin exon 23 demonstrated a significant increase in exon-skipping efficiency in dystrophic mdx mice. The best ones for PMO and 2'-OMePS delivery have reached to 11-, 15-fold compared with the AO only in mdx mice, respectively. CONCLUSION: The study of triazine-cored amphiphilic polymers for AO delivery in vitro and in mdx mice indicated that the carrier's performances are related to the molecular size, compositions and hydrophilic-lipophilic balance (HLB) of the polymers, as well as the AO's structure. Improved exon-skipping efficiency of AOs observed in vitro and in mdx mice accompanied with low cytotoxicity demonstrated TAP polymers are potentials as safe and effective delivery carrier for gene/drug delivery.


Assuntos
Portadores de Fármacos/química , Oligonucleotídeos Antissenso/química , Polímeros/química , Triazinas/química , Animais , Permeabilidade da Membrana Celular , Distrofina/química , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Masculino , Camundongos Endogâmicos mdx , Estrutura Molecular , Morfolinos/química , Mioblastos/metabolismo , Polietilenoimina/química , Relação Estrutura-Atividade , Transfecção
2.
Hum Mol Genet ; 26(19): 3682-3698, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666318

RESUMO

α-Dystroglycanopathies are a group of muscular dystrophies characterized by α-DG hypoglycosylation and reduced extracellular ligand-binding affinity. Among other genes involved in the α-DG glycosylation process, fukutin related protein (FKRP) gene mutations generate a wide range of pathologies from mild limb girdle muscular dystrophy 2I (LGMD2I), severe congenital muscular dystrophy 1C (MDC1C), to Walker-Warburg Syndrome and Muscle-Eye-Brain disease. FKRP gene encodes for a glycosyltransferase that in vivo transfers a ribitol phosphate group from a CDP -ribitol present in muscles to α-DG, while in vitro it can be secreted as monomer of 60kDa. Consistently, new evidences reported glycosyltransferases in the blood, freely circulating or wrapped within vesicles. Although the physiological function of blood stream glycosyltransferases remains unclear, they are likely released from blood borne or distant cells. Thus, we hypothesized that freely or wrapped FKRP might circulate as an extracellular glycosyltransferase, able to exert a "glycan remodelling" process, even at distal compartments. Interestingly, we firstly demonstrated a successful transduction of MDC1C blood-derived CD133+ cells and FKRP L276IKI mouse derived satellite cells by a lentiviral vector expressing the wild-type of human FKRP gene. Moreover, we showed that LV-FKRP cells were driven to release exosomes carrying FKRP. Similarly, we observed the presence of FKRP positive exosomes in the plasma of FKRP L276IKI mice intramuscularly injected with engineered satellite cells. The distribution of FKRP protein boosted by exosomes determined its restoration within muscle tissues, an overall recovery of α-DG glycosylation and improved muscle strength, suggesting a systemic supply of FKRP protein acting as glycosyltransferase.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Distroglicanas/metabolismo , Exossomos , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mioblastos/metabolismo , Pentosiltransferases , Proteínas/genética , Células Satélites de Músculo Esquelético/transplante , Transferases
3.
Mol Ther ; 22(11): 1890-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25048216

RESUMO

Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.


Assuntos
Terapia Genética/métodos , Coração/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Proteínas/genética , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Camundongos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Distrofia Muscular Animal/terapia , Pentosiltransferases
4.
Mol Ther ; 21(1): 210-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23164938

RESUMO

We investigated a series of small-sized polyethylenimine (PEI, 0.8/1.2 k)-conjugated pluronic copolymers (PCMs) for their potential to enhance delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) in vitro and in dystrophic mdx mice. PCM polymers containing pluronics of molecular weight (Mw) ranging 2-6 k, with hydrophilic-lipophilic balance (HLB) 7-23, significantly enhanced PMO-induced exon-skipping in a green fluorescent protein (GFP) reporter-based myoblast culture system. Application of optimized formulations of PCMs with PMO targeted to dystrophin exon 23 demonstrated a significant increase in exon-skipping efficiency in dystrophic mdx mice. Consistent with our observations in vitro, optimization of molecular size and the HLB of pluronics are important factors for PCMs to achieve enhanced PMO delivery in vivo. Observed cytotoxicity of the PCMs was lower than Endo-porter and PEI 25 k. Tissue toxicity of PCMs in muscle was not clearly detected with the concentrations used, indicating the potential of the PCMs as effective and safe PMO carriers for treating diseases such as muscular dystrophy.


Assuntos
Morfolinos/administração & dosagem , Poloxâmero , Polietilenoimina/química , Animais , Sequência de Bases , Linhagem Celular , Éxons , Genes Reporter , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos mdx , Mioblastos/metabolismo , Reação em Cadeia da Polimerase
5.
Mol Pharm ; 10(10): 3862-70, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924275

RESUMO

Nitric oxide (NO) has major physiological and cellular effects on muscle growth, repair, and function. In most muscle biopsies from humans with myopathies, sarcolemma-localized neuronal nitric oxide synthase (nNOS) is either reduced or not detected, particularly in dystrophin-deficient Duchenne muscular dystrophy (DMD). Abnormal NO signaling at the sarcolemmal level is integrally involved in the pathogenesis and accounts, at least in part, for the muscle weakness of DMD. Dystrophic muscle fibers exhibit an increased susceptibility to contraction-induced membrane damage. Muscle relaxants function to prevent muscle wasting by decreasing nerve impulses and reducing calcium influx that regulates tensing or tightening of muscle fibers. We have recently developed a new class of nitric esters that combines the pharmacological functions of NO and muscle relaxation. Here, we report the synthesis and properties of the nitric ester (MMPN) of 2-methyl-2-n-propyl-1,3-propanediol (MPP) and its effect in mdx dystrophic mice, a murine model of DMD. MMPN produced significant improvements in biochemical, pathological, and functional phenotypes in the mouse model. The endurance of exercise was extended by 47% in time to exhaustion and 84% in running distance. Serum CK level was decreased by 30%. Additionally, MMPN decreased intracellular free calcium concentration without causing skeletal muscle weakness. No hepatic or renal toxicities were observed during the study. Our investigations unveil a potential new treatment for muscular diseases.


Assuntos
Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Fármacos Neuromusculares/uso terapêutico , Animais , Western Blotting , Células Cultivadas , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Óxido Nítrico/metabolismo
6.
Am J Pathol ; 178(1): 261-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21224063

RESUMO

Limb-girdle muscular dystrophy 2I (LGMD2I) is caused by mutations in the fukutin-related protein (FKRP) gene. Unlike its severe allelic forms, LGMD2I usually involves slower onset and milder course without defects in the central nervous system. The lack of viable animal models that closely recapitulate LGMD2I clinical phenotypes led us to use RNA interference technology to knock down FKRP expression via postnatal gene delivery so as to circumvent embryonic lethality. Specifically, an adeno-associated viral vector was used to deliver short hairpin (shRNA) genes to healthy ICR mice. Adeno-associated viral vectors expressing a single shRNA or two different shRNAs were injected one time into the hind limb muscles. We showed that FKRP expression at 10 months postinjection was reduced by about 50% with a single shRNA and by 75% with the dual shRNA cassette. Dual-cassette injection also reduced a-dystroglycan glycosylation and its affinity to laminin by up to 70% and induced α-dystrophic pathology, including fibrosis and central nucleation, in more than 50% of the myofibers at 10 months after injection. These results suggest that the reduction of approximately or more than 75% of the normal level of FKRP expression induces chronic dystrophic phenotypes in skeletal muscles. Furthermore, the restoration of about 25% of the normal FKRP level could be sufficient for LGMD2I therapy to correct the genetic deficiency effectively and prevent dystrophic pathology.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Proteínas/genética , Interferência de RNA , Adenoviridae , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Distroglicanas/metabolismo , Vetores Genéticos , Glicosilação , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Pentosiltransferases , RNA Interferente Pequeno/genética , Transferases
7.
Bioconjug Chem ; 23(4): 837-45, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22443086

RESUMO

Hyperbranched poly(ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) and low-molecular-weight polyethylenimine (LPEI, M(w) 0.8k, 1.2k, and 2.0k) and evaluated in vitro and in vivo as gene carriers. PEAs effectively condensed plasmid DNA with particle sizes below 200 nm and surface charges between 11.5 and 33.5 mV under tested doses [at the ratios 2-10:1 of polymer/pDNA(w/w)]. The PEAs showed significantly lower cytotoxicities when compared with PEI 25k in two different cell lines. The PEAs (C series) composed of PEI 2k showed higher transgene expression compared to PEAs of PEI 0.8k (A series) or 1.2k (B series). Highest gene transfection efficiency in CHO, C2C12 myoblast, and human skeletal muscle (HSK) cell lines was obtained with TAEI/PEI-2K (C12) at a ratio of 1:2. Both C12, C14(TAEI/PEI-2K at a ratio of 1:4) demonstrated 5-8-fold higher gene expression as compared with PEI 25k in mdx mice in vivo through intramuscular administration. No obvious muscle damage was observed with these new polymers. Higher transfection efficiency and lower toxicity indicate the potential of the biodegradable PEAs as safe and efficient transgene delivery vectors.


Assuntos
Portadores de Fármacos/química , Distrofias Musculares/genética , Polietilenoimina/química , Transfecção/métodos , Triazinas/química , Animais , Células CHO , Cricetinae , Cricetulus , DNA/química , DNA/genética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Heparina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Peso Molecular , Plasmídeos/genética , Polietilenoimina/metabolismo , Polietilenoimina/toxicidade
8.
Mol Ther ; 19(1): 9-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978473

RESUMO

Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level.


Assuntos
Éxons , Mutação da Fase de Leitura , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Distrofina/genética , Humanos , Oligonucleotídeos Antissenso/genética
9.
Ann Neurol ; 65(6): 667-76, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19288467

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) is caused by the inability to produce dystrophin protein at the myofiber membrane. A method to rescue dystrophin production by antisense oligonucleotides, termed exon-skipping, has been reported for the mdx mouse and in four DMD patients by local intramuscular injection. We sought to test efficacy and toxicity of intravenous oligonucleotide (morpholino)-induced exon skipping in the DMD dog model. METHODS: We tested a series of antisense drugs singly and as cocktails, both in primary cell culture, and two in vivo delivery methods (intramuscular injection and systemic intravenous injection). The efficiency and efficacy of multiexon skipping (exons 6-9) were tested at the messenger RNA, protein, histological, and clinical levels. RESULTS: Weekly or biweekly systemic intravenous injections with a three-morpholino cocktail over the course of 5 to 22 weeks induced therapeutic levels of dystrophin expression throughout the body, with an average of about 26% normal levels. This was accompanied by reduced inflammatory signals examined by magnetic resonance imaging and histology, improved or stabilized timed running tests, and clinical symptoms. Blood tests indicated no evidence of toxicity. INTERPRETATION: This is the first report of widespread rescue of dystrophin expression to therapeutic levels in the dog model of DMD. This study also provides a proof of concept for systemic multiexon-skipping therapy. Use of cocktails of morpholino, as shown here, allows broader application of this approach to a greater proportion of DMD patients (90%) and also offers the prospect of selecting deletions that optimize the functionality of the dystrophin protein.


Assuntos
Modelos Animais de Doenças , Éxons/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animais , Cães , Morfolinas/administração & dosagem , Mioblastos Cardíacos/patologia , Mutação Puntual
10.
Mol Ther ; 16(1): 38-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17968354

RESUMO

Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, arising from mutations in the dystrophin gene that preclude the synthesis of functional protein. Antisense oligonucleotides (AOs) have been shown to induce specific exon skipping and thereby restore the reading frame and expression of functional dystrophin. In this report, we examine the effects of peptide nucleic acid (PNA) oligonucleotides and PNAs conjugated with peptides including TAT, muscle-specific peptide (MSP), adeno-associated virus 6 (AAV6) functional domain (AAV6), and AAV8 functional domain (AAV8), on exon skipping in vitro and in vivo. Efficient skipping of targeted exon 23 was achieved in cultured mdx myoblasts with PNA and PNA-peptide conjugates. Furthermore, single intramuscular injections of PNA and all PNA-peptide conjugates resulted in significant numbers of dystrophin-positive fibers in the injected tibialis anterior (TA) muscles of mdx mice, with no apparent local toxicity. Similar effects of exon skipping and dystrophin expression were obtained in mice of all ages. PNA and PNA-AAV6, PNA-AAV8 conjugates induced dystrophin expression in a dose-dependent manner. Our results demonstrate that PNAs have a higher efficiency of exon skipping than 2'O methyl phosphorothioate AOs do, and have a potential use in AO chemistry for antisense therapy of DMD.


Assuntos
Distrofina/biossíntese , Distrofina/genética , Éxons/genética , Terapia Genética , Oligonucleotídeos Antissenso/uso terapêutico , Ácidos Nucleicos Peptídicos/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Injeções Intramusculares , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Ácidos Nucleicos Peptídicos/administração & dosagem
11.
Mol Ther Nucleic Acids ; 16: 663-674, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31121478

RESUMO

Antisense oligonucleotide (AO) therapy has been the specific treatment for Duchenne muscular dystrophy, with ongoing clinical trials. However, therapeutic applications of AOs remain limited, particularly because of the lack of efficient cellular delivery methods imperative for achieving efficacy. In this study, we investigated a few aminoglycosides (AGs) for their potential to improve the delivery of antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. AGs had lower cytotoxicity compared with Endoporter, the currently most effective delivery reagent for PMO in vitro, and improved efficiency in PMO delivery 9- to 15-fold over PMO alone. Significant enhancement in systemic PMO-targeted dystrophin exon 23 skipping was observed in mdx mice, up to a 6-fold increase with AG3 (kanamycin) and AG7 (sisomicin) compared with PMO only. No muscle damage could be detected clearly with the test dosages. These results establish AGs as PMO delivery-enhancing agents for treating muscular dystrophy or other diseases.

12.
PLoS One ; 13(1): e0191016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29320543

RESUMO

The glycosylation of alpha-dystroglycan (α-DG) is crucial in maintaining muscle cell membrane integrity. Dystroglycanopathies are identified by the loss of this glycosylation leading to a breakdown of muscle cell membrane integrity and eventual degeneration. However, a small portion of fibers expressing functionally glycosylated α-DG (F-α-DG) (revertant fibers, RF) have been identified. These fibers are generally small in size, centrally nucleated and linked to regenerating fibers. Examination of different muscles have shown various levels of RFs but it is unclear the extent of which they are present. Here we do a body-wide examination of muscles from the FKRP-P448L mutant mouse for the prevalence of RFs. We have identified great variation in the distribution of RF in different muscles and tissues. Triceps shows a large increase in RFs and together with centrally nucleated fibers whereas the pectoralis shows a reduction in revertant but increase in centrally nucleated fibers from 6 weeks to 6 months of age. We have also identified that the sciatic nerve with near normal levels of F-α-DG in the P448Lneo- mouse with reduced levels in the P448Lneo+ and absent in LARGEmyd. The salivary gland of LARGEmyd mice expresses high levels of F-α-DG. Interestingly the same glands in the P448Lneo-and to a lesser degree in P448Lneo+ also maintain considerable amount of F-α-DG, indicating the non-proliferating epithelial cells have a molecular setting permitting glycosylation.


Assuntos
Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Mutação , N-Acetilglucosaminiltransferases/fisiologia , Nervos Periféricos/metabolismo , Proteínas/fisiologia , Glândulas Salivares/metabolismo , Animais , Modelos Animais de Doenças , Distroglicanas/genética , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Pentosiltransferases , Nervos Periféricos/patologia , Regeneração/fisiologia , Glândulas Salivares/patologia , Transferases
13.
Mol Ther Nucleic Acids ; 11: 192-202, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858054

RESUMO

Antisense oligonucleotide (AON) therapy for Duchenne muscular dystrophy has drawn great attention in preclinical and clinical trials, but its therapeutic applications are still limited due to inefficient delivery. In this study, we investigated a few saponins for their potential to improve delivery performance of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that these saponins, especially digitonin and tomatine, improve the delivery efficiency of PMO comparable to Endo-Porter-mediated PMO delivery in vitro. The significant enhancement of PMO targeting to dystrophin exon 23 delivery was further observed in mdx mice up to 7-fold with the digitonin as compared to PMO alone. Cytotoxicity of the digitonin and glycyrrhizin was lower than Endo-Porter in vitro and not clearly detected in vivo under the tested concentrations. These results demonstrate that optimization of saponins in molecular size and composition are key factors to achieve enhanced PMO exon-skipping efficiency. The higher efficiency and lower toxicity endow saponins as gene/AON delivery enhancing agents for treating muscular dystrophy or other diseases.

14.
Drug Des Devel Ther ; 12: 3705-3715, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464402

RESUMO

BACKGROUND: Antisense oligonucleotide (ASO)-mediated exon skipping has been feasible and promising approach for treating Duchenne muscular dystrophy (DMD) in preclinical and clinical trials, but its therapeutic applications remain challenges due to inefficient delivery. METHODS: We investigated a few Saponins for their potential to improve delivery performance of an antisense 2'-Omethyl phosphorothioate RNA (2'-OMePS) in muscle cells and in dystrophic mdx mice. This study was carried out by evaluating these Saponins' toxicity, cellular uptake, transduction efficiency in vitro, and local delivery in vivo for 2'-OMePS, as well as affinity study between Saponin and 2'-OMePS. RESULTS: The results showed that these Saponins, especially Digitonin and Tomatine, enhance the delivery of 2'-OMePS with comparable efficiency to Lipofectamine 2k (LF-2k) -mediated delivery in vitro. Significant performance was further observed in mdx mice, up to 10-fold with the Digitonin as compared to 2'-OMePS alone. Cytotoxicity of the Digitonin and Glycyrrhizin was much lower than LF-2k in vitro and not clearly detected in vivo under the tested concentrations. CONCLUSION: This study potentiates Saponins as delivery vehicle for 2'-OMePS in vivo for treating DMD or other diseases.


Assuntos
Éxons/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , Saponinas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Lipídeos/química , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Oligonucleotídeos Antissenso/química , Saponinas/farmacologia , Relação Estrutura-Atividade
15.
Skelet Muscle ; 8(1): 13, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625576

RESUMO

BACKGROUND: Fukutin-related protein (FKRP) mutations are the most common cause of dystroglycanopathies known to cause both limb girdle and congenital muscular dystrophy. The P448Lneo- mouse model has a knock-in mutation in the FKRP gene and develops skeletal, respiratory, and cardiac muscle disease. METHODS: We studied the natural history of the P448Lneo- mouse model over 9 months and the effects of twice weekly treadmill running. Forelimb and hindlimb grip strength (Columbus Instruments) and overall activity (Omnitech Electronics) assessed skeletal muscle function. Echocardiography was performed using VisualSonics Vevo 770 (FujiFilm VisualSonics). Plethysmography was performed using whole body system (ADInstruments). Histological evaluations included quantification of inflammation, fibrosis, central nucleation, and fiber size variation. RESULTS: P448Lneo- mice had significantly increased normalized tissue weights compared to controls at 9 months of age for the heart, gastrocnemius, soleus, tibialis anterior, quadriceps, and triceps. There were no significant differences seen in forelimb or hindlimb grip strength or activity monitoring in P448Lneo- mice with or without exercise compared to controls. Skeletal muscles demonstrated increased inflammation, fibrosis, central nucleation, and variation in fiber size compared to controls (p < 0.05) and worsened with exercise. Plethysmography showed significant differences in respiratory rates and decreased tidal and minute volumes in P448Lneo- mice (p < 0.01). There was increased fibrosis in the diaphragm compared to controls (p < 0.01). Echocardiography demonstrated decreased systolic function in 9-month-old mutant mice (p < 0.01). There was increased myocardial wall thickness and mass (p < 0.001) with increased fibrosis in 9-month-old P448Lneo- mice compared to controls (p < 0.05). mRNA expression for natriuretic peptide type A (Nppa) was significantly increased in P448Lneo- mice compared to controls at 6 months (p < 0.05) and for natriuretic peptide type B (Nppb) at 6 and 9 months of age (p < 0.05). CONCLUSIONS: FKRP-deficient P448Lneo- mice demonstrate significant deficits in cardiac and respiratory functions compared to control mice, and this is associated with increased inflammation and fibrosis. This study provides new functional outcome measures for preclinical trials of FKRP-related muscular dystrophies.


Assuntos
Coração/fisiopatologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Proteínas/fisiologia , Animais , Peso Corporal/fisiologia , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Força da Mão/fisiologia , Masculino , Camundongos Mutantes , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Miocárdio/patologia , Miosite/genética , Miosite/patologia , Miosite/fisiopatologia , Tamanho do Órgão/fisiologia , Pentosiltransferases , Condicionamento Físico Animal , Pletismografia Total/métodos , Proteínas/genética , Músculos Respiratórios/patologia , Músculos Respiratórios/fisiopatologia , Transferases
16.
Mol Cell Biol ; 23(6): 2192-201, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12612089

RESUMO

Frameshift mutations provide recognized mechanisms for changing the coding potential of an organism. Here, multiple frameshifts are identified in repetitive sequences within an Epstein-Barr virus unspliced early gene, LF3, which is associated with the viral replicative cycle and also transcriptionally expressed in many virally associated tumors. On the DNA strand encoding LF3, there are three open reading frames, only one of which contains an initiation codon. Most (>95%) of the gene consists of numerous (>20, varying with cell source) GC-rich copies of a 102-bp direct repeat (called IR 4) flanked by small unique sequences. LF3 may express a protein if its initiation and termination codons reside in the same reading frame, but this is not always the case. Frameshifting events, occurring in short runs of pyrimidines (mainly C residues) in the repeats, give rise to mutations which may provide a mechanism for escape of an LF3 function from host surveillance. Sequence studies link these frameshifts to DNA replication errors. Notably, the number of sites in LF3 at which such mutations can occur permits a very large amount of diversity in this gene. Our data also suggest a second degeneracy mechanism within the protein itself, which influences its stability and may reflect a host defense mechanism. LF3 thus provides a potentially important model for studying the quest for supremacy between a virus and its host.


Assuntos
Genes Virais , Herpesvirus Humano 4/genética , Sequências Repetitivas de Ácido Nucleico , Proteínas Virais/genética , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Pareamento de Bases , Sequência de Bases , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Carcinoma/patologia , Carcinoma/virologia , Linhagem Celular Transformada , Códon/genética , Replicação do DNA , DNA Viral/genética , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Mutação da Fase de Leitura , Variação Genética , Humanos , Mononucleose Infecciosa/patologia , Mononucleose Infecciosa/virologia , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Fases de Leitura Aberta , Seleção Genética , Alinhamento de Sequência , Evasão Tumoral , Proteínas Virais/biossíntese
17.
J Mater Chem B ; 5(21): 3907-3918, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264252

RESUMO

A set of triazine-cored cationic amphiphilic polymers (TAPs) composed of low molecular weight (Mw) polyethylenimine (LPEI, B) and amphiphilic Jeffamine (A) were prepared with controllable composition and molecular size, and further characterized for plasmid DNA (pDNA) delivery both in vitro and in vivo. These new polymers condensed pDNA efficiently at a polymer/pDNA weight ratio of 5 with particle sizes below 200 nm. The introduction of Jeffamine in the polymers significantly improved the cellular uptake of pDNA, but without increasing its toxicity compared with the parent LPEI. The best formulation resulted in 6- and 29-fold transfection efficiencies of PEI 25k in vitro and in vivo in mdx mice, respectively. Higher transfection efficiency was achieved with more lipophilic A1/A3-based polymers in vitro, with 1A11B3 and 1A12B3 showing the greatest delivery performance. However, the lipophilicity of the TAPs is less critical in vivo as the less lipophilic A2/A4 constructed TAPs also performed similarly well as the more lipophilic A1/A3 constructed ones. In addition, a synergistic effect of LPEI and Jeffamine via chemical conjugation for the delivery of pDNA was revealed in transfection efficiency. These results indicate that the appropriate positive surface and particle size of polymer/pDNA complex and the composition and hydrophilic-lipophilic balance (HLB) of polymers are crucial for effective delivery, although intricate matching exists between A and B in the TAP composition. Triazine-cored cationic amphiphilic polymers are safe and potentially effective carriers for gene/drug delivery.

18.
Drug Deliv ; 24(1): 952-961, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28633548

RESUMO

Antisense oligonucleotide therapy for Duchenne muscular dystrophy has shown great potential in preclinical and clinical trials, but its therapeutic applications are still limited due to inefficient delivery. In this study, we investigated a few polyquaterniums (PQs) with different size and composition for their potential to improve delivery performance of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that LuviquatTM series, especially PQ-1 and PQ-3, promoted the exon-skipping efficiency comparable to Endoporter-mediated PMO delivery in vitro. Significant enhancement in skipping dystrophin exon 23 has also been achieved with PQ-3 up to seven-fold when compared to PMO alone in mdx mice. Cytotoxicity of the PQs was lower than Endoporter and PEI 25 K in vitro and muscle damage not clearly detected in vivo under the tested concentrations. These results together demonstrate that the optimization of PQ in molecular size, composition and distribution of positive charges is the key factor to achieve enhanced PMO exon-skipping efficiency. The higher efficiency and lower toxicity endow polyquaternium series as AO delivery enhancing agents for treating muscular dystrophy and other diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Animais , Distrofina , Éxons , Camundongos , Camundongos Endogâmicos mdx , Morfolinos , Oligonucleotídeos Antissenso
19.
Polymers (Basel) ; 9(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30970855

RESUMO

A series of amphiphilic peptides modified PMO (Pt-PMO) were prepared, and their antisense effect and toxicity were evaluated both in vitro and in mdx mice. The results showed that the exon-skipping performance of Pt-PMO are relative to the structure of the conjugated peptide: the Pt3/Pt4 composed of six/seven arginines and one myristoylation modified PMO showed more efficacy and with less toxicity as compared to others, confirming that appropriate hydrophilic-lipophilic balance (HLB) and cationic sequence numbers play a crucial role in improving cell uptake and corresponding exon-skipping efficiency. This was observed particularly in enhanced delivery efficiency of PMO comparable to B-PMO in vitro, while 6-fold improved exon-skipping was achieved against naked PMO in vivo. The multi-PMO modified Pt8-PMO also showed improved exon-skipping both in vitro and in vivo, though there is lower efficiency in systemic delivery as compared to Pt4-PMO. These data suggest that with optimization of peptide in component, charge density has clear potential for exploration towards achieving higher efficiency of antisense oligonucleotide systemic delivery, and thus is more applicable for clinical application.

20.
Mol Ther Nucleic Acids ; 9: 120-131, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246291

RESUMO

We investigated a series of Tween 85 modified low molecular weight polyethylenimine (LPEI, 0.8k/1.2k/2.0k)-copolymers (Zs) through simple formulation and covalent conjugation with phosphorodiamidate morpholino oligomer (PMO) for their potential to enhance delivery in vitro and in dystrophic mdx mice. Z polymers significantly enhanced PMO-induced exon-skipping in a GFP reporter-based cell culture system. Application of optimized formulations of Zs with PMO targeted to dystrophin exon 23 demonstrated a significant increase in exon-skipping efficiency in mdx mice. Consistent with our observations in vitro, optimization of molecular size and hydropholic-lipopholic balance (HLB) of polymers are important factors to achieve enhanced PMO delivery in vivo. The best formulation of Zs enhanced PMO delivery with 20- and 6-fold over PMO alone in vitro and in vivo, respectively. Further, chemical conjugation of the polymer and PMO exhibits greater benefit than polymer/PMO simple formulation in PMO delivery efficiency. Observed cytotoxicity of the Zs was lower than Endo-porter and PEI 25k in vitro, and no tissue toxicity was clearly detected with the Zs at the dosage tested. These results indicate the potential of the Zs as effective and safe PMO delivery carriers for treating diseases such as muscular dystrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA